Permit Review Report

New York State Department of Environmental Conservation

Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

Facility Identification Data
Name: MOMENTIVE PERFORMANCE MATERIALS
Address: 260 HUDSON RIVER RD
WATERFORD, NY 12188

Owner/Firm
Name: MPM SILICONES LLC
Address: 260 HUDSON RIVER RD
WATERFORD, NY 12188, USA
Owner Classification: Corporation/Partnership

Permit Contacts
Division of Environmental Permits:
Name: BETH A MAGEE
Address: NYSDEC - WARRENSBURG SUBOFFICE
232 GOLF COURSE RD
WARRENSBURG, NY 12885-1172
Phone: 5186231281

Division of Air Resources:
Name: STEPHEN J BARLOW
Address: NYSDEC - WARRENSBURG SUBOFFICE
232 GOLF COURSE RD
WARRENSBURG, NY 12885
Phone: 5186231212

Air Permitting Contact:
Name: RUTH YEOMANS
Address: MOMENTIVE PERFORMANCE MATERIALS
260 HUDSON RIVER RD
WATERFORD, NY 12188
Phone: 5182335075

Permit Description
Introduction
The Title V operating air permit is intended to be a document containing only enforceable terms and conditions as well as any additional information, such as the identification of emission units, emission points, emission sources and processes, that makes the terms meaningful. 40 CFR Part 70.7(a)(5) requires that each Title V permit have an accompanying "...statement that sets forth the legal and factual basis for the draft permit conditions". The purpose for this permit review report is to satisfy the above requirement by providing pertinent details regarding the permit/application data and permit conditions in a more easily understandable format. This report will also include background narrative and explanations of regulatory decisions made by the reviewer. It should be emphasized that this permit review report, while based on information contained in the permit, is a separate document and is not itself an enforceable term and condition of the permit.

Summary Description of Proposed Project
Application for renewal of Air Title V Facility.

Attainment Status
New York State Department of Environmental Conservation
Permit Review Report

Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

MOMENTIVE PERFORMANCE MATERIALS is located in the town of WATERFORD in the county of SARATOGA.
The attainment status for this location is provided below. (Areas classified as attainment are those that meet all ambient air quality standards for a designated criteria air pollutant.)

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Matter (PM)</td>
<td>ATTAINMENT</td>
</tr>
<tr>
<td>Particulate Matter $< 10 \mu$ in diameter (PM10)</td>
<td>ATTAINMENT</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO2)</td>
<td>ATTAINMENT</td>
</tr>
<tr>
<td>Ozone*</td>
<td>MARGINAL NON-ATTAINMENT</td>
</tr>
<tr>
<td>Oxides of Nitrogen (NOx)**</td>
<td>ATTAINMENT</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>ATTAINMENT</td>
</tr>
</tbody>
</table>

* Ozone is regulated in terms of the emissions of volatile organic compounds (VOC) and/or oxides of nitrogen (NOx) which are ozone precursors.
** NOx has a separate ambient air quality standard in addition to being an ozone precursor.

Facility Description:
Momentive Performance Materials operates a silicone production facility (sic 2821) located in Saratoga County, New York, in the town of Waterford. The plant is approximately 12 miles north of Albany. The site produces silicone products and materials including resins, fluids, dispersions, emulsions, heat curing elastomers and room temperature vulcanizing (rtv) elastomers. The site has continuous and batch chemicals processes, compounding, finishing and packaging operations, and steam generation capability.

Major emissions include: Carbon Monoxide (CO), Sulfur Dioxide (SO2), Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs), Oxides of Nitrogen (NOx), Particulate Matter (PM) and Particulate Matter less than 10 microns (PM-10).

Emission unit listing and a brief description:

C-27018: This unit consists of the following production areas: Methyl Chloride, Gaseous Dihydrolysis (GDH), Liquid Dihydrolysis (LDH), Siloxane Oil, the Area 38 tank farm, the B30 Polykettle systems, and the B24A MQ Resin system. The unit also includes the following control devices and their associated equipment: the MCS Vent Incinerator, MCS Vent Scrubber, the Fixed Box (#2) Hazardous Waste Incinerator, and the Rotary Kiln Hazardous Waste Incinerator. Sources in this unit include storage tanks, distillation columns, process vessels, Synthetic Organic Chemical Manufacturing Industry (SOCMI) distillation columns, SOCl reactors, and SOCl wastewater. Applicable regulations for unit C-27018 include: the Hazardous Organic NESHAP (HON) under 40 CFR 63 Subparts F, G, and H, the Hazardous Waste Incinerator MACT under 40 CFR 63 Subpart EEE, the Miscellaneous Organic NESHAP under 40 CFR Subpart FFFF, New Source Performance Standards (NSPS) for SOCl distillation columns (40 CFR 60 Subpart NNN), SOCl reactors (40 CFR 60 Subpart RRR), and volatile organic liquid (VOL) storage tanks (40 CFR 60 Subpart Kb), Volatile Organic Compound Reasonably Available Control Technology (VOC RACT) under 6 NYCRR Subpart 212, sulfur fuel limitations under 6 NYCRR Subpart 225, VOC RACT for storage tanks under 6 NYCRR Subpart 229, and State Air Toxics under 6 NYCRR Subpart 212.

C-27035: Emission unit C-27035 is comprised of several aboveground storage tanks that are used to store acids. All of the tanks are located in the HCL Tank Farm. All but one of the tanks vents to a packed tower
water scrubber (EP27035). One tank vents to an eductor (EP27039) which is piped to the chemical process sewer. The emission unit also contains three locations within the tank farm, which allow for scrapping of acid to the chemical process sewer. The applicable regulations are the State Air Toxics under 6 NYCRR Subpart 212, the Miscellaneous Organic NESHAP under 40 CFR Subpart FFFF; and New Source Performance Standards (NSPS) for volatile organic liquid (VOL) storage tanks under 40 CFR 60 Subpart Kb.

C-61007: Emission unit C-61007 includes the Silicon Grinding and Fines Passivation area. In the area, Silicon Grinding area, silicon metal is ground, screened, and transferred to silos. In the Fines Passivation area, mixers are used to mix fines to neutralize and harden the material. Processes include mixers, dust collectors, and an unloading station. Applicable regulations for this unit include emissions limitations for capping under Prevention of Significant Deterioration (40 CFR Subpart 52), the Miscellaneous Organic NESHAP under 40 CFR Subpart FFFF, and particulate emissions limitations under 6 NYCRR 212.

C-62008: Emission unit C-62008 includes all equipment associated with the methylchlorosilane (MCS) reactor systems (MCS II system, MCS III system and MCS IV system) that are not associated with the control devices in unit C-27018. Sources include process vessels, feed hoppers, and hot oil furnaces. Applicable regulations for this unit include emissions limitations for capping under Prevention of Significant Deterioration (40 CFR Subpart 52) and Non-Attainment New Source Review under 6 NYCRR 231-2, the Miscellaneous Organic NESHAP under 40 CFR Subpart FFFF, and particulate limitations under 6 NYCRR 212.

C-62014: This unit consists of sources in the Trichlorosilanes (TCS) and Fumed Silica production areas. The TCS area currently consists of exempt sources. The Fumed Silica area consists of a scrubber and various solids handling equipment. Applicable regulations include State Air Toxics under 6 NYCRR Subpart 212 and the Hydrochloric Acid Production MACT under NNNNN.

EGNRTR: This unit consists of emergency generator sources. They are subject to the Reciprocating Internal Combustion Engine MACT of 40 CFR 63 Subpart ZZZZ.

F-INISH: This unit consists of intermediate and final production of silicone products and materials, including resins, fluids, dispersions, emulsions, heat curing elastomers, room temperature vulcanizing (rtv) elastomers, sealants, and treated fumed silica. Also includes various maintenance shops and individual maintenance sources (such as degreasers). Process sources include storage vessels, batch reactors, process tanks, mixers, feed hoppers, filter presses, drumming operations, liquid add stations, process strippers, unloading stations, packaging operations, maintenance degreasers, and all of the associated control equipment. Applicable regulations include the following: emissions limitations for capping under Prevention of Significant Deterioration (40 CFR Subpart 52) and Non-Attainment New Source Review under 6 NYCRR 231-2, New Source Performance Standards (NSPS) for volatile organic liquid (VOL) storage tanks under 40 CFR 60 Subpart Kb, Volatile Organic Compound Reasonably Available Control Technology (VOC RACT) under 6 NYCRR Subpart 212, State Air Toxics under 6 NYCRR Subpart 212, VOC RACT for Storage Tanks Under 6 NYCRR 229, the Miscellaneous Organic NESHAP under 40 CFR Subpart FFFF, and VOC RACT for Part Cleaners under 6 NYCRR 226.

H-OFURN: This unit consists of the plant’s hot oil furnaces not associated with MCS. These furnaces are subject to 6 NYCRR 227 and the Industrial Boiler MACT.

T-13004: Unit 13004 consists of various pilot plant processes located in Building 13. Sources include process vessels, filters, and local extraction discharges. The applicable regulations include State Air Toxics under 6 NYCRR Subpart 212.
T-14009: This unit consists of equipment in the facility's Pilot Plant, located in Buildings 14, 15 and 16. The Pilot Plant makes developmental/experimental products for evaluation, and scaled-down batches of problem production grades to develop process adjustments. Scaled down batches of commercial products are also made here. Processes are small-volume sources including process vessels, stripers, distillation columns, mixers, and reactors. The applicable regulations include State Air Toxics under 6 NYCRR Subpart 212.

U-28002: Emission Unit U28002 consists of Boilers 13 and 18 and a #2 Fuel Oil storage tank. Applicable regulations include emissions limitations for capping under Prevention of Significant Deterioration (40 CFR Subpart 52) and Non-Attainment New Source Review under 6 NYCRR 231-2, New Source Performance Standards (NSPS) for volatile organic liquid (VOL) storage tanks under 40 CFR 60 Subpart Kb, NSPS regulations for industrial boilers under 40 CFR 60 Subpart Db, NOx RACT under 6 NYCRR 227-2, particulate limitations under 6 NYCRR 227-1, the Industrial Boiler MACT, and fuel limitations for sulfur under 6 NYCRR 225.

U-28003: Emission Unit U28003 consists of boilers 14, 15, 16, and 17. Applicable regulations include Prevention of Significant Deterioration (40 CFR Subpart 52) and Non-Attainment New Source Review under 6 NYCRR 231-2, NOx RACT under 6 NYCRR 227-2, particulate limitations under 6 NYCRR 227-1, the Industrial Boiler MACT, and fuel limitations for sulfur under 6 NYCRR 225.

W-97004: This emission unit is the wastewater treatment process system of the waste handling area. The wastewater treatment plant is a physical/chemical treatment system consisting of pH neutralization, oil and grease separation, clarification, and air stripping operations. The applicable regulations are New Source Performance Standards (NSPS) for Volatile Organic Liquid (VOL) storage tanks under 40 CFR 60 Subpart Kb, State Air Toxics under 6 NYCRR Subpart 212, the Miscellaneous Organic NESHAP under 40 CFR Subpart FFFF, and Volatile Organic Compound Reasonably Available Control Technology (VOC RACT) under 6 NYCRR Subpart 212.

E-LISTS: This emission unit exists simply to provide a means of condensing the permit. Processes in this EU list all affected sources for a specific citation in its monitoring description. This Process is then listed as the only affected source in the actual monitoring condition for the citation. This lists the affected sources in a much more condensed fashion than making a separate line for each source and should eliminate 300 pages from the permit.
incinerator - devices which burn waste material for disposal
control - emission control devices
process - any device or contrivance which may emit air contaminants
that is not included in the above categories.

MOMENTIVE PERFORMANCE MATERIALS is defined by the following emission unit(s):

Emission unit **C27018** - Chemical operations and associated sources and emission points requiring control of emissions and/or monitoring under MON MACT, HWC, MACT, HCL MACT, NSPS or VOC RACT. The MCS Vent incinerator, MCS vent scrubbers, Fixed Box Incinerator, and Rotary Kiln Incinerator as well as various scrubbers, spray towers, venturis, filter and baghouses are included in this unit.

Emission unit **C27018** is associated with the following emission points (EP) :

14006, 21011, 23002, 23005, 24113, 24120, 24141, 24142, 24143, 24144, 24208, 24417, 24423, 24703, 24801, 24908, 24925, 24927, 24933, 24936, 24937, 24938, 24939, 24949, 24950, 24951, 24952, 24953, 24954, 24962, 24978, 27022, 27023, 27024, 30804, 30806, 30807, 30808, 30907, 30914, 30916, 30917, 30918, 31019, 31022, 31030, 31031, 31032, 31034, 31035, 31036, 31037, 31040, 31041, 31047, 32035, 32038, 34001, 34002, 34007, 3412, 35006, 35007, 35009, 35010, 35011, 35012, 35016, 35017, 35018, 35028, 35031, 35032, 35033, 35034, 35035, 35036, 35037, 35039, 35040, 35043, 35044, 35046, 35901, 36001, 36003, 36004, 37002, 37004, 37007, 37009, 37011, 37013, 37014, 37017, 37018, 37019, 37020, 37021, 37022, 37023, 37026, 37027, 37033, 37034, 37036, 37038, 37039, 37040, 37041, 37042, 37043, 37044, 37045, 37060, 37062, 37063, 37066, 37067, 37068, 37069, 37070, 37071, 37072, 37077, 37078, 37079, 37080, 37081, 37085, 37702, 37704, 37705, 37707, 37708, 37801, 37803, 37804, 37805, 37806, 37812, 37813, 37814, 37815, 37816, 37817, 37818, 37819, 37827, 37901, 37902, 37903, 37905, 37907, 37909, 37910, 37911, 37917, 37918, 37920, 37921, 37922, 37923, 37925, 37926, 37929, 37932, 37934, 37941, 37942, 37943, 37944, 37945, 37946, 37947, 37951, 37952, 37956, 37957, 37958, 37960, 37961, 37962, 38006, 38007, 38018, 48001, 62005, 62007, 62011, 62017, 64001, 64006, 64007, 67003, 67004, 67006, 70001, 70003, 70006, 71001, 71003, 71005, 71013, 76001, 76005, 76009, 76012, 76013, 76014, 76701, 76710, 76711, 76712, 76713, 76714, 76715, 76716, 76718, 76719, 78001, 78002, 78004, 78005, 78006, 78007, 78009, 78011, 78015, 78016, 78017, 78018, 78019, 78025, 78031, 78032, 78041, 78042, 97001, 97002, 97003

Process: **005** is located at Building 78 - The PK10 system consists of a polykettle, column, and a light ends system with condenser, receiver, and vacuum system. It is a batch system used to make silicone polymers. It makes products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The polykettle/column vent through EP 78032/78015 and 78016.

Process: **007** is located at Building 14 - The 40 gallon Ross Mixer system is a batch system operated by building 30. It makes products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The mixer vents through EP 14006.

Process: **008** is located at Building 37 - The building 37 Cracker system consists of a cracker, condenser and receiver. The Cracker system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63
Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The Cracker system vents directly to atmosphere at EP 37952. The Cracker system can also vent through the cracker vacuum ejectors and hotwell to atmosphere at EP 37902 or continue on and vent through CPU vacuum ejectors to atmosphere at EP 37901.

Process: 012 is located at Building 78 - The PK12 system consists of the PK12 reactor, light ends receiver and condenser. It is a batch system used to make silicone polymers. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process includes any associated cleanouts. The polykettle system vents through EP 78018 or through a vacuum ejector system EP 78019.

Process: 013 is located at Building 76 - The east hydrolyzer system includes a high acid scrubber, condenser system, receiver, hydrolyzer, column and silane feed tanks. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The east hydrolyzer system vents through a vent gas scrubber to EP 76001. It can also vent through the east high acid scrubber (a Group 1 control device) via chemical sewer (EP 76710). The east high acid scrubber can vent through the west high acid scrubber (a Group 1 control device) via chemical sewer (EP 76711).

Process: 022 is located at Building 76 - The west hydrolyzer system includes a high acid scrubber, condenser, receiver, hydrolyzer, and silane blend and weight tanks. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The west hydrolyzer system vents through a vent gas scrubber to EP 76001. The condenser can vent through the east high acid scrubber (a Group 1 control device) via chemical sewer (EP 76710). The west hydrolyzer, receiver and condenser can also vent through the west high acid scrubber (a Group 1 control device) via chemical sewer (EP 76711).

Process: 023 is located at Building 30 - Polykettle 1 is a Group 1 batch vent system subject to the regulations of 40 CFR 63, Subpart FFFF. The polykettles vents through an ejector system, pre-condenser and collection tank. This polykettle system is connected to the Building 30 vent header which vents to the compressor knockout tank (24KOT) and then through the MON MACT vent header to the either the RKI (EP 97003) or the FBI (EP 97001, 97002). This process includes any associated cleanouts. Emissions are accounted for under process 422 (RKI) or 424(FBI).

Process: 024 is located at Building 30 - Polykettle 2 is a Group 1 batch vent system subject to the regulations of 40 CFR 63, Subpart FFFF. The polykettles vents through an ejector system, pre-condenser and collection tank. This polykettle system is connected to the Building 30 vent header which vents to the compressor knockout tank (24KOT) and then through the MON MACT vent header to the either the RKI (EP 97003) or the FBI (EP 97001, 97002). This process includes any associated cleanouts. Emissions are accounted for under process 422 (RKI) or 424(FBI).

Process: 025 is located at Building 30 - Polykettle 3 is a Group 1 batch vent system subject to the regulations of 40 CFR 63, Subpart FFFF. The polykettles vents through an ejector system, pre-condenser and collection tank. This polykettle system is connected to the Building 30 vent header which vents to the
compressor knockout tank (24KOT) and then through the MON MACT vent header to the either the RKI (EP 97003) or the FBI (EP 97001, 97002). This process includes any associated cleanouts. Emissions are accounted for under process 422 (RKI) or 424(FBI).

Process: 026 is located at Building 30 - Polykettle 5 is a Group 1 batch vent system subject to the regulations of 40 CFR 63, Subpart FFFF. The polykettles vents through an ejector system, pre-condenser and collection tank. This polykettle system is connected to the Building 30 vent header which vents to the compressor knockout tank (24KOT) and then through the MON MACT vent header to the either the RKI (EP 97003) or the FBI (EP 97001, 97002). This process includes any associated cleanouts. Emissions are accounted for under process 422 (RKI) or 424(FBI).

Process: 039 is located at Building 37 - The 300 gallon glass reactor system consists of a reactor, ejectors, condensers, hotwell, condenser pot, weigh tank and receiver. The 300 reactor glass system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The 300 glass reactor system vents directly to atmosphere at EP 37040 or via oxygen analyzer at EP 37066. The 300 glass reactor system can also vent through a receiver to atmosphere at EP 37060. The 300 glass reactor system vents through the ejector vent system to atmosphere (EP 37021 or EP 37083).

Process: 040 is located at Building 76 - The east filter aid kettle (FAK) system includes a filter aid vessel, precoat tank, solid feeds hopper and dust collector. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The east FAK system vents through a vent gas scrubber to EP 76001. The solid feeds hopper vents through the east dust collector to EP 76005.

Process: 041 is located at Building 30 - The polykettle 8 system consists of polykettle 8, a condenser and a receiver. It is a batch system used to make various oils and gums. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN1. This process also includes any cleanouts. The Polykettle 8 systems vents either directly to atmosphere (EP 30808) or through a vacuum system (EP30918).

Process: 042 is located at Building 30 - The polykettle 4 system consists of polykettle 4, a condenser and a receiver. It is a batch system used to make various oils and gums. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN1. This process also includes any cleanouts. The Polykettle 4 systems vents either directly to atmosphere (EP 30804) or through a vacuum system (EP30914).

Process: 043 is located at Building 30 - The polykettle 6 system consists of polykettle 6, a condenser and a receiver. It is a batch system used to make various oils and gums. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN1. This process also includes any cleanouts. The
Polykettle 6 systems vents either directly to atmosphere (EP 30806) or through a vacuum system (EP30916).

Process: 045 is located at Building 30 - The polykettle 7 system consists of polykettle 7, a condenser and a receiver. It is a batch system used to make various oils and gums. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN1. This process also includes any cleanouts. The Polykettle 7 systems vents either directly to atmosphere (EP 30807) or through a vacuum system (EP30917).

Process: 047 is located at Building 71 - The west filter aid kettle (FAK) system includes a filter aid kettle and precoat tank. Products made on this system that include HAPs and are subject to 40 CFR 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The west FAK system vents through a vent gas scrubber to EP 76001. The west FAK can also vent through the west high acid scrubber (a Group 1 control device) via chemical sewer (EP 76711).

Process: 066 is located at Building 76 - The west blend tank system includes a platinum storage tank, an inhibitor tank, 15M blend tank 15M Powder Transfer System and the transfer pump drum in inhibitor additive system. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The platinum tank vents to atmosphere at EP 76712. The inhibitor tank vents to atmosphere at EP 76713. The 15M blend tank vents to atmosphere at EP 76718. The 15M blend tank vents directly to atmosphere at EP 76718. The elephant trunk for the inhibitor tank has an elephant trunk that vents directly to atmosphere at EP 76719.

Process: 067 is located at Building 35 - LDH/Siloxanes oil production. This process represents Siloxane water removal systems, and neutralizer vents associated with LDH and Siloxanes oil production. The 4 stage mixer/settler vents through venturi scrubbers (EP 35017). The neutralizer mixer and wash mixer settler vent through the wash scrubber (EP35018). The B51 Decanter tank vents directly to EP 35043 or can go through a water eductor scrubber (EP 35044).

Process: 083 is located at Building 23 - The Building 23 blend tank system are blend tanks subject to the regulations of 40 CFR 63, Subpart FFFF. The blend tank system vents to the B24 MON MACT Water Scrubber (MTCSS) and compressor knockout tank (24KOT) and then through the MON MACT vent header to the either the RKI (EP 97003) or the FBI (EP 97001, 97002). This process includes any associated cleanouts. Emission are accounted for under process 422 (RKI) and 424 (FBI).

Process: 084 is located at Building 37 - The 300 Stainless Steel Reactor system consists of a kettle, packed column, receiver and condensers. The system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40
CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The 300 Stainless Steel Reactor system vents to atmosphere at EP 37804.

Process: 086 is located at Building 37 - The 4M Dispersion Kettle system consists of a kettle, receiver, condensers and drum station. The NPK reactor system is part of the 4M Dispersion Kettle system and includes a reactor, condenser and receiver. The 4M Dispersion Kettle/NPK system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any cleanouts. The 4M Dispersion Kettle system vents to atmosphere through EP 37020, 37078 or EP 37079. The 4M Dispersion Kettle system can also vent through the cracker vacuum ejectors and hotwell to atmosphere at EP 37902 or continue on and vent through CPU vacuum ejectors to atmosphere at EP 37901. The kettle drum station vents to atmosphere at EP 37707. The NPK reactor and condenser can vent directly to atmosphere through EP 37017. The NPK reactor and condenser can also vent through the CPU vacuum ejectors to atmosphere at EP 37901 or continue on and vent to cracker vacuum ejectors and hotwell to atmosphere at EP 37902. The reactor, condenser and receiver can also vent directly to atmosphere at EP 37033.

Process: 087 is located at Building 37 - The 2M Dispersion Kettle system consists of a kettle, condenser, receiver and drum station. The 2M Dispersion Kettle system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The 2M Dispersion Kettle system can vent to atmosphere through EPs 37011, EP 37080 or EP 37081. The kettle drum station vents to atmosphere at EP 37707.

Process: 088 is located at Building 37 - The 2M Hydrolyzer system consists of a hydrolyzer, receiver, condenser, 100 column and 100 column hotwell system. The 2M Hydrolyzer system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The 2M Hydrolyzer system vents to atmosphere at EP 37002 and EP 37701 or through an acetone ejector system to atmosphere at EP 37022. The receivers and 100 column can vent through a knockout tank to EP 37018. The receivers can also vent directly to atmosphere at EPs 37067, 37068, 37069, 37070 and 37071. The 100 column hotwell system can also vent directly to EP 37018, 37072 and 37004. The liquid goes to the chemical sewer.

Process: 090 is located at Building 23 - This process represents sources in the Methyl Chlorosilane (MCS) operations area and the Methyl Chloride plant which are vented to the Rotary Kiln Incinerator (source 96RKI, EP 97003) or the Fixed Box Incinerator (source 93FBI, EPs 97001, 97002) via the process vent header when the MCS vent incinerator/scrubber (sources MCSVI/MCSVVS, EP 62007) is not being utilized. Emissions from this process are accounted for under process code 422 for the RKI and 424 for the FBI. The MCS4 recovery column (source MCSIV) and the 114B mono/tri column (source 114BC), which are part of this process, are subject to specific requirements under 40CFR 60, Subpart NNN.

This process has operations out of Buildings 23, 34, 55, 62, 65 & 67

Process: 092 is located at Building 71 - The 1M Fluorosilicone system consists of a reactor/column, weigh tank and receivers. It is a batch system used to produce fluoro grades. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT
batch tracking as described in Process MN3. This process also includes any cleanouts. The 1M Fluorosilicone system vents through a vapor scrubber and ejector system to EP 71013.

Process: 093 is located at Building 23 - The Building 27 Weak Acid System, tank 508C, tank 508D, tank 508E and tank 508F vent to the incinerators through the TCS Process Vent Header to either the RKI (EP97003) or the FBI (EP97001, 97002). Emission are accounted for under process code 422 (RKI) and 424 (FBI).

Process: 094 is located at Building 68 - This process represents sources in the FS Reactor System which are vented to the Rotary Kiln Incinerator (source 96RKI, EP 97003) or the Fixed Box Incinerator (source 93FBI, EPs 97001, 97002) via the process vent header. Emissions from this process are accounted for under process code 422 for the RKI and 424 for the FBI.

Process: 095 is located at Building 71 - This process represents sources in the Trichlorosilane (TCS) operations area which are vented to the Rotary Kiln Incinerator (source 96RKI, EP 97003) or the Fixed Box Incinerator (source 93FBI, EPs 97001, 97002) via the process vent header. Emissions from this process are accounted for under process code 422 for the RKI and 424 for the FBI. The TCS Reactor normally vents to the incinerators through the TCS Process Vent Header. It can also vent to atmosphere at EP 62017.

Process: 096 is located at Building 37 - Equipment for Family of Material #096 which is a miscellaneous organic manufacturing unit (MCPU) that is regulated under 40 CFR Part 63 Subpart FFFF.

Process: 097 is located at Building 30 - The TCS tanks (tank 5503, tank 5504, tank 5505, tank 5506 and tank 563A) vent to the incinerators through the TCS Process Vent Header to the RKI (EP 97003) or FBI (EP 97001, EP 97002). Emissions are accounted for under process code 422 (RKI) or 424 (FBI).

Process: 098 is located at Building 64 - Distillation column vents through the MCS distillation header, connect to the TCS process header and then to the RKI (EP 97003) or the FBI (97001, 97002). Emissions are accounted for under process code 422 (RKI) or 424 (FBI).

Process: 100 is located at Building 37 - The CPU system consists of a vent condenser and slops relief tank. The CPU system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The slops tank vents through a vent condenser to atmosphere at EP 37023. The CPU vacuum ejectors vent to atmosphere at EP 37901. The catalyst tank vents to atmosphere at EP 37062. The neutralizer tank vents to atmosphere at EP 37063.

Process: 106 is located at Building 23 - The storage tanks vent through the intermediates vent scrubber and then to the atmosphere via EP 23002. The tanks have a nitrogen blanket or are under pressure.

Process: 108 is located at Building 76 - The specialty kettle manufactures intermediates, polymers, catalyst blends or other specialty fluids. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The specialty kettle vents through the vent gas scrubber to EP 76001. The specialty kettle can also vent through the west high acid scrubber (a Group 1 control device) via chemical sewer (EP 76711). The specialty kettle feed hopper vents to the east dust collector and then through EP 76005.

Process: 109 is located at Building 37 - The dimethyl fluids equilibrator system consists of a 1M
New York State Department of Environmental Conservation
Permit Review Report

Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

equilibrator, overhead condenser, receiver, water separator, secondary coalescer, reactor, slurry tank, bag
dump station and the 515 intermediate storage tanks. The dimethyl fluids thin film vaporator (LUWA
stripper) is used to remove volatiles from material produced in the 1M equilibrator. The TFE system
includes fluid blend filter press receivers, precoat tanks, columns and intermediate storage tanks. The
dimethyl fluids equilibrator system may make products subject to 40 CFR 63 Subpart FFFF as well as non
MON MACT products. Products made on this system that include HAPs, and are subject to 40 CFR 63
Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process
MN1. This process also includes any associated cleanouts. The dimethyl fluids equilibrator system vents
directly to atmosphere at EP 37009. The filtrol addition slurry tank vents through a dust collector to
atmosphere at EP 37934 and EP 37903. The intermediate tanks vent to atmosphere at EPs 37910, 37920,
and 37921. The dimethyl fluids filter press vents directly to atmosphere at EP 37707. The 514
intermediate tanks vent to atmosphere at EPs 37909 & 37917. The Dimethyl Fluids Vacuum System vents
through EP 48001.

Process: 110 is located at Building 24 - The nickel kettle system consists of a kettle, receiver and
condenser. The nickel kettle system makes products subject to 40 CFR 63, Subpart FFFF as well as non
MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63
Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process
MN1. The #4 FAK tank vents directly to atmosphere at EP 24309. The interface recovery tank vents to
the atmosphere at EP 24423 as well as the chemical sewer. The NV still vents directly to atmosphere at EP
24908. This process includes any associated cleanouts.

Process: 112 is located at Building 30 - The 3M Filter Aid Kettle (FAK) system consists of a reactor FAK,
pre-coat tank. The 3M FAK system may make products subject to 40 CFR 63, Subpart FFFF as well as non
MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63
Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process
MN1. This process also includes any associated cleanouts. The precoat tank vents directly to atmosphere
at EP 37039. The 3M reactor FAK vent directly to atmosphere at EP 37038. The platinum tank has a
nitrogen blanket and vents to atmosphere through EP 37827.

Process: 114 is located at Building 37 - The 1500 gallon glass (1500 PUFA) reactor system consists of a
reactor, condenser, receivers, splitter, decanter, weigh tank, and platinum tank. The 1500 gallon reactor
system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products.
Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are
tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This
process also includes any associated cleanouts. The 1500 gallon PUFA system vents directly to atmosphere
at EP 37042, EP 37044 or EP 37045. The reactor system can also vent through a mechanical vacuum
system with knockout pot as well as the 1500 PUFA knock out pot at EP 37019. The south receiver can
vent directly to atmosphere at EP 37044. The platinum tank has a nitrogen blanket and vents to atmosphere

Process: 119 is located at Building 23 - The continuous hydrolysis loop system consists of the hydrolysis
loop, tanks, neutralizers, holding tanks, interface recovery tank, surge tanks, precoat tanks, filter aid kettle,
sparkler filter, NV still, west batch neutralizer and enzinger press. The continuous hydrolysis loop system
makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made
on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are managed as
described in process MN1. The #4 FAK tank vents directly to atmosphere at EP 24309. The interface
recovery tank vents to the atmosphere at EP 24423 as well as the chemical sewer. The #4 tank vents to
atmosphere at EP 24951. The enzinger precoat tank vents to atmosphere at EP 24925. The enzinger FAK
vents directly to atmosphere at EP 24937. The holding tanks vent to atmosphere at EP 24938, EP 24939
and EP 24703. The continuous hydrolysis hold tank vents through the continuous vent scrubber to

Process: 121 is located at Building 37 - The 4M PUFA Reactor system consists of a knockout tank, reactor, column, condenser, splitter, decanter, slurry tank and weigh tank. The 4M PUFA reactor system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The 4M PUFA Reactor system can vent to atmosphere through EP 37007, EP 37014 and EP 37077 or through a mechanical vacuum system with knockout pots and tanks at EP 37041. The reactor system can also vent through the 4M PUFA receiver to atmosphere at EP 37034. The weigh tank vents to atmosphere at EP 37801. The slurry tank vents directly to atmosphere at EP 37803.

Process: 131 is located at Building 78 - The PK9 system consists of a polykettle and a light ends system with condenser, receiver, and sieve drier. It is a batch system used to make silicone polymers. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The polykettle vents through EP 78006 and the light ends system vents through EP 78011/78007 and 78016.

Process: 132 is located at Building 78 - The PK11 system consists of a polykettle and a light ends system with condenser, receiver, and pelitizer. It is a batch system used to make silicone polymers. It may make products subject to 40 CFR Part 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process includes any associated cleanouts. The polykettle, receiver and condenser vents through EP 78017 or it can vent through a mechanical system through EP 78016. The pelitizer vents through EP 78002.

Process: 133 is located at Building 78 - The fluorosilicone cracker system consists of the fluorosilicone cracker, condensers, receivers, storage tank, totes, weigh tank, and ejectors. It is a batch system used to make a variety of products including gums and elastomers. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process may operate in two different modes: initial startup, as well as a semi-continuous operation. This process includes any associated cleanouts. The fluorosilicone cracker and vacuum system vent through EP 78001. The totes vent through EP 78031.

Process: 134 is located at Building 78 - The PK14 system consists of the PK14 reactor, light ends receiver and condenser. It is a batch system used to make silicone polymers. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The PK14 vents through EP 78025 or through a vacuum ejector system EP 78019.

Process: 137 is located at Building 30 - The 500 gallon BK mixer is used to make silicone polymer and
specialty RTV. The mixer makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN1. The 500 BK mixer vents through a dust collector to EP 31022. The 500 gallon BK mixer vacuum pump vents through EP 31019. This process includes any associated cleanouts.

Process: 139 is located at Building 30 - The 3000 L North Drais mixer system consists of the mixer, feed bins, surge bins and tanks, drum pumps and transfer stations. It is a batch system used to make products subject to 40CFR 63, Subpart FFFF, as well as non MON MACT products. Products made on this system that contain HAPs and are subject to Subpart FFFF are tracked under monthly MON MACT batch tracking and managed as described in process MN1. The system can vent through the central dust collector (EP 31030), the flammable kitting room and EP 31031, the transfer station (EP 31034), the ammonia scrubber (EP 31036 and 31037) or the Drais venturi scrubber (EP 31041). This process includes any associated cleanouts.

Process: 140 is located at Building 30 - The 630 L Drais mixer system consists of the mixer, feed bins, surge bins and tanks, drum pumps and transfer stations. It is a batch system used to make products subject to 40CFR 63, Subpart FFFF, as well as non MON MACT products. Products made on this system that include HAPs and are subject to Subpart FFFF are tracked under monthly MON MACT batch tracking and managed as described in process MN1. The system can vent through the central dust collector (EP 31030), the flammable kitting room and EP 31031, the transfer station (EP 31034) and to the ammonia scrubber (EP 31036 and 31037). This process includes any associated cleanouts.

Process: 142 is located at Building 30 - The 3000 L South Drais mixer system consists of the mixer, feed bins, surge bins and tanks, drum pumps and transfer stations. It is a batch system used to make products subject to 40CFR 63, Subpart FFFF, as well as non MON MACT products. Products made on this system that contain HAPs and are subject to Subpart FFFF are tracked under monthly MON MACT batch tracking and managed as described in process MN1. The system can vent through the central dust collector (EP 31030), the flammable kitting room and EP 31031, the transfer station (EP 31034), the ammonia scrubber (EP 31036 and 31037) or the Drais venturi scrubber (EP 31041). This process includes any associated cleanouts.

Process: 146 is located at Building 30 - The 500 gallon Day mixer is used to mix silicone polymer and specialty RTV. The mixer makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. The 500 Day gallon mixer vents through a dust collector to EP 31022. The 500 gallon Day mixer vacuum pump vents through EP 31019. This process includes any associated cleanouts.

Process: 153 is located at Building 37 - The artisan system consists of a stripper, blend tank and hold tank. The artisan system may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process also includes any associated cleanouts. The artisan system can vent to atmosphere through EP 37911. The APV stripper can vent through the CPU vacuum ejectors to atmosphere at EP 37901 or continue on and vent to cracker vacuum ejectors and hotwell to atmosphere at EP 37902. The light end surge tank vents through a conservation vent to atmosphere at EP 37958.

Process: 154 is located at Building 71 - The 1M Reactor system consists of a reactor, weigh tank, condenser and receiver. It is a batch system used to make specialty siloxane blends, silicone fluids and catalyst blends. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart...
FFF, are tracked under monthly MON MACT batch tracking as described in Process MN1. This process also includes the local ventilation system used to remove dimethylformamide vapors during filter rebuild as well as any associated cleanouts. The 1M Reactor system vents through a knockout tank which normally vents through the 1M Reactor Scrubber system (EP 71001). The knockout tank can also vent to atmosphere (EP 71003).

Process: 156 is located at Building 71 - The 3M Hydrolyzer system consists of a hydrolyzer, condenser system, and weigh tanks. It is a batch system used to make specialty siloxanes, fluids and blends. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking as described in Process MN1. This process also includes any associated cleanouts. The 3M Hydrolyzer system vents through a knockout tank which normally vents through the 3M Hydrolyzer Scrubber system (EP 71001).

Process: 189 is located at Building 78 - The fluorosilicone doughmixer ‘A’ system consists of the doughmixer, condensers and fume hood. It is a batch system used to make a variety of products including gums. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process includes any associated cleanouts. The fluorosilicone doughmixer and vacuum system vent through EP 78001. The doughmixer fume hood exhausts through EP 78004.

Process: 201 This process represents heat exchange systems (cooling water) within the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27018 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Heat exchange systems subject to Subpart FFFF are summarized in the Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 205 This process represents the management of Group 1 wastewater or residuals in containers. The Group 1 wastewater or residuals are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27018 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 209 This process represents the management of Group 1 wastewater in individual drain systems. The Group 1 wastewater streams are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27018 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 210 This process represents the management of MON maintenance wastewater streams from unit C-27018 that are subject to 40 CFR 63, Subpart F.

Process: 213 This process represents the management of Group 1 process wastewater in tanks. The Group 1 wastewater is generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27018 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater storage tank determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).
Process: 217 This process represents the treatment of Group 1 wastewater streams and/or residuals removed from Group 1 wastewater streams. The Group 1 wastewater or residuals are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27018 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 220 This process represents any pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, instrumentation systems, and control devices or closed vent systems in the unit C-27018 processes that are subject to the leak detection and repair requirements in 40 CFR 63, Subpart UU for MON MACT (40 CFR 63, Subpart FFFF) compliance. Each piece of equipment to which Subpart UU applies is identified in the LeakDAHS system.

Process: 300 is located at Building 78 - The fluorosilicone doughmixer "B" system consists of the doughmixer, condensers and five liquid addition stations. It is a batch system used to make a variety of products including gums. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. This process includes any associated cleanouts. The fluorosilicone doughmixer and condenser/receiver system vent through EP 78041. The liquid addition stations vent through EP 78042.

Process: 400 is located at Building 34 - This process represents any pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, instrumentation systems, and control devices or closed vent systems in the Methyl Chloride manufacturing area that are subject to the leak detection and repair requirements in 40 CFR 63, Subpart H. Each piece of equipment to which Subpart H applies is identified in the LeakDAHS system.

Process: 401 is located at Building 34 - This process represents sources in the Methyl Chlorosilane (MCS) operations area and the Methyl Chloride plant which are vented to the MCS vent incinerator/vent scrubber (control sources MCSVI/ MCSVS, EP 62007). Control sources MCSVI and MCSVS and emission point 62007 are subject to specific requirements/limitations under 6NYCRR Part 212, 40 CFR 63, Subpart G and 40CFR 63, Subpart FFFF. In addition, the MCS4 recovery column (source MCSIV) and the 114B mono/tri column (source 114BC), which are part of this process, are subject to specific requirements under 40CFR 60, Subpart NNN.

Activities occur in buildings 34, 55, 62, 65 & 67

Process: 402 is located at Building 27 - Methanol storage tanks 502A and 502B are equipped with internal floating roofs. The tanks are subject to the requirements of 40 CFR 63, Subpart G. The tank vents through EP 27022 and EP 27023

Process: 403 This process represents the management of Group 2 wastewater streams from the methyl chloride plant that are subject to 40 CFR 63, Subparts F and/or G.

Process: 404 This process represents the management of maintenance wastewater streams from the methyl chloride plant that are subject to 40 CFR 63, Subparts F and/or G.

Process: 405 is located at Building 34 - Sulfuric acid fumes are vented from the head space of the spent sulfuric acid tank through a water scrubber to EP 34012. Sulfuric acid fumes from rail loading stations and
tank truck loading also vent through the scrubber.

Process: 406 This process represents cooling water from heat exchange systems within the methyl chloride plant that are subject to 40 CFR 63, Subparts F and/or G.

Process: 422 is located at Building AREA 96 - Rotary Kiln Incinerator (RKI) Normal Mode Operation: The RKI is used to incinerate liquid and drummed waste streams. The RKI may also be used to combust vents from the TCS process vent header (processes 090, 093, 094, 095, 097), the MCS Distillation header (process 098), the WWTP clarifier air strippers (process 825), the WWTP tank farm header (process 705), the MON MACT vent header (processes 023, 024, 025, 026, 083, 715) and the MON MACT air strippers (process 705). The RKI is also used to incinerate liquid and drummed waste streams. The outlet vent stream from the RKI passes through a scrubbing system consisting of a quench spray tower, a counter current scrubber and two ionizing wet scrubber trains. The RKI is subject to the requirements of 40 CFR 63, Subpart EEE (Hazardous Waste Combustion MACT). Either natural gas or number 2 fuel oil may be used as a fuel supply. Emissions from this process are calculated based on the results of Comprehensive Performance Testing. This process vents through EP 97003.

Process: 423 is located at Building AREA 96 - Rotary Kiln Incinerator (RKI) Vent Mode Operation: The RKI is used to burn only process vents in this mode. This may include process vent burning from the TCS process vent header (processes 090, 093, 094, 095, 097), the MCS Distillation header (process 098), the WWTP clarifier air strippers (process 825), the WWTP tank farm header (process 705), the MON MACT vent header (processes 023, 024, 025, 026, 083, 715) or the MON MACT air strippers (process 705). No hazardous waste is burned in this operation. One of the IWS trains may be off-line during this mode of operation. 40 CFR Subpart G regulations apply during vent mode operation but Subpart EEE does not. Emissions from this process are accounted for under process code 422. This process vents through EP 97003.

Process: 424 is located at Building AREA 96 - Fixed Box Incinerator (FBI) #2 Normal Mode Operation: The FBI is used to combust liquid waste streams. The FBI may also be used to combust vents from the TCS process vent header (processes 090, 093, 094, 095, 097), the MCS Distillation header (process 098), the WWTP clarifier air strippers (process 825), the WWTP tank farm header (process 705), the MON MACT vent header (processes 023, 024, 025, 026, 083, 715) or the MON MACT air strippers (process 705). The outlet vent stream from the FBI passes through a scrubbing system consisting of a quench spray tower, one of two parallel counter current scrubbers and one of two ionizing wet scrubber trains. The FBI is subject to the requirements of 40 CFR 63, Subpart EEE (Hazardous Waste Combustion MACT). Either natural gas or number 2 fuel oil may be used as a fuel supply. Emissions from this process are calculated based on the results of Comprehensive Performance Testing. This process vents through EP 97001 and/or EP 97002.

Process: 425 is located at Building AREA 96 - Fixed Box Incinerator (FBI) Maintenance Operation: The FBI is used to incinerate liquid waste streams, but at a reduced rate compared to process 424. The FBI may also be used to combust vents from the TCS process vent header (processes 090, 093, 094, 095, 097), the MCS Distillation header (process 023, 024, 025, 026, 083, 715) or the MON MACT air strippers (process 705). The outlet vent stream from the FBI passes through a scrubbing system consisting of a quench spray tower, one of two parallel counter current scrubbers (FBCS2) and one of two ionizing wet scrubber trains (IWS21 and IWS22). The FBI is subject to the requirements of 40 CFR 63 Subpart EEE (Hazardous Waste Combustion MACT) under this process code. Either natural gas or number 2 fuel oil may be used as a fuel supply. Emissions from this process are calculated based on the results of Comprehensive Performance Testing. Emissions from this process are accounted for under process code 424. This process vents through EP 97002.
Process: 272 is located at Building AREA 96 - Fixed Box Incinerator (FBI) Soot Blowing Operation: No waste or vents are fed to the incinerator during this operation and the burner is shut down but one or both air pollution control systems remain operational. Only soot blowing is performed. Emissions from this process are accounted for under process code 424. One or both pollution control systems may be utilized during soot blowing. The requirements of 40 CFR 63 Subparts EEE and G do not apply during this operation. Emissions from this process are accounted for under process code 424. This process vents through EP 97001 and/or EP 97002.

Process: 430 is located at WWTP, Building AREA 96 - Fixed Box Incinerator (FBI) Vent Mode Operation: The FBI is used to burn only process vents in this mode. This may include process vents from the TCS process vent header (processes 090, 093, 094, 095, 097), the MCS Distillation header (process 098), the WWTP tank farm header (process 705), the MON MACT vent header (processes 023, 024, 025, 026, 083, 715) or the MON MACT air strippers (process 705). No hazardous waste is burned in this operation. Counter current scrubber #1 and the IWS #1 train may be off-line during this mode of operation. 40 CFR 63 Subpart G regulations apply during vent mode operation but Subpart EEE does not. Emissions from this process are accounted for under process code 424. This process vents through EP 97001 and/or EP 97002.

Process: 701 is located at Building 37 - Material from TFE that has been stripped goes to the 517 tanks (intermediate storage tanks) and then to one of three blend tanks. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MN1 MACT batch tracking and managed as described in process MN1. The intermediate storage tanks vent to atmosphere at EPs 37941, 37942, 37943, 37944. The blend tanks vent to atmosphere at EPs 36001, 37945 and 37946.

Process: 704 is located at Building 34 - Methanol recovery columns. Dual distillation columns which recover Methanol from water scrubber bottom product. The recovery columns normally vent to RKI / FBI but occasionally they may vent to atmosphere through EP34001 / EP34002 during start ups or periods of high pressure. When used, duration venting is recorded in a log book.

Process: 706 is located at Building 27 - The HCl compressor and GDH system used in the manufacture of hydroxylate from HCl and dichlorosilane vents through the HCl Fume Scrubber (EP 27024). Vent air from the 755 column also vents through the HCl Fume Scrubber to EP 27034.

Process: 707 is located at Building 35 - 117/118 column system. Emissions from the 117/118 columns are transferred to the 547B knockout tank, where condensed vapors are collected (EP 35031). The remaining vapors are sent to an eductor water unit, where the gases are mixed with tempered water and are sent to the chemical sewer.

Process: 709 is located at Building 67 - The Building 67 MCS 4 atmospheric vents include a copper feed hopper and two fresh powder feed hoppers. The catalyst feed hopper vents through a filter prior to venting to atmosphere at EP 67006. The fresh powder hoppers vent to atmosphere through filters at EP 67003 and 67004.

Process: 715 is located at Building AREA 96 - The MQ Resins system is a group 1 batch system subject to 40 CFR 63, Subpart FFFF and includes a body kettle condenser, receiver, wash tank, precoat tank, filter aid kettle, blend kettle, and polar solvent receiver. Equipment from this system vents though the MON MACT vent header to RKI (EP 97003) or FBI (EP97001, 97002). Emissions are accounted for under process code 422 (RKI) or 424 (FBI).

Process: 723 is located at Building 30 - The 25-gallon Ross mixer is used to mix silicone polymer. The mixer makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products
made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN1. The Ross mixer vents through EP 30907. This process includes any associated cleanouts.

Process: 748 is located at Building 62 - This process represents equipment associated with the Trichlorosilanes (TCS) production area and residue cleavage reactor as well as a number of hoppers and silos from TCS, MCS2, MCS3, MCS4, fumed silica (FS) and the fines passivation process that vent through one of two scrubbing systems. Typically the TCS sources and residue cleavage reactor vent through the silanes header to the west spray tower (control code 62WST) and west spray scrubber (control code 62WVS) to emission point 62011, and the hoppers and silos vent through the powder header to the east spray tower (control code 62EST) and east vent scrubber (control code 62EVS) to emission point 62005. The scrubbers are cross connected, however, which allows the silanes header to be vented through the east scrubber system to emission point 62005 and the powder header to vent through the west scrubber system to emission point 62011 as needed. Emission points 62005 and 62011 are subject to specific requirements under 6NYCRR Part 212.

Activities occur at buildings 62, 55, 67 &618

Process: 750 is located at Building 23 - The acid storage tank vents through the tank scrubber and then to the atmosphere via EP 23005. The tanks have a nitrogen blanket or are under pressure.

Process: 753 is located at Building 35 - Building 35 storage tanks working and breathing losses that vent to atmosphere. All tanks have a nitrogen blank. Additionally, some tanks also have a pressure control valve present.

Process: 754 is located at Building 35 - Siloxane tank vapors vent through a wash scrubber before discharging to the atmosphere at EP 35018. During planned maintenance shutdowns flow may be reduced/stopped, but there may still be breathing losses from the tanks. All tanks are equipped with individual vacuum regulators to prevent vacuum damage to the tanks.

Process: 755 is located at Building 71 - The building 71 elephant trunks capture vapors from drumming stations and vent to atmosphere through a single location.

Process: 758 is located at Building 37 - Building 37 elephant trunks vent directly to atmosphere.

Process: 759 is located at Building 34 - Building 34 surge tank working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blank.

Process: 761 is located at Building 21 - 107/108 Column vents through a vent knock out tank prior to venting to atmosphere at EP21011.

Process: 766 is located at Building 76 - Building 76 storage tanks working and breathing losses that vent directly to atmosphere or to the vent gas scrubber. All tanks have a nitrogen blank and/or PCV.

Process: 770 is located at Building 76 - Vapors from drumming stations and working losses from loading stations vent to atmosphere or through a scrubber prior to discharging to the atmosphere.

Process: 776 is located at Building 78 - Building 78 storage tanks working and breathing losses.

Process: 782 is located at Building 37 - Building 37 storage tank working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blanket. Additionally, some tanks also have a pressure control
valve present. These sources belong to emission unit C-27018.

Process: 785 is located at Building 30 - The poly kettles solvent decantor tank vents directly to atmosphere at EP 32035.

Process: 786 is located at Building 30 - The doughmixer vacuum cleaner vents directly to atmosphere at EP 32038.

Process: 787 is located at Building 37 - The emulsion system includes blend tanks, premix tanks and silos. The system may make products subject to 40 CFR 63 subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs are tracked under monthly MON MACT batch tracking and managed as described in process MN1. The north blend tank vents through EP 37815. The south blend tank vents through EP 37817. The north emulsion silo vents through EP 37818. The north emulsion silo vents through EP 37819. The north and south emulsion blend tanks as well as the north and south premix tanks vent through EP 37704. The north premix tank vents through EP 37806 and the south premix tank vents through EP 37816. This process also includes any associated cleanouts.

Process: 788 is located at Building 24A - Building 24A storage tank working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blank. Additionally, some tanks also have a pressure control valve present.

Process: 792 is located at Building 24A - The west filter aid hopper for the MQ Resins system vents to atmosphere at EP 24412. The silicate mix tank vents to atmosphere at EP 24978.

Process: 794 is located at Building 71 - Vapors from Building 71 processes that vent to atmosphere through sewer vents. This includes the 1M Hydrolyzer system that vents to an eductor system and then to the chem sewer. The 1M system includes the hydrolyzer, receiver, condenser and a 3 stage ejector eductor system. The system may make products subject to 40 CFR 63 subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs are tracked under monthly MON MACT batch tracking and managed as described in process MN1.

Process: 795 is located at Building 30 - Elephant trunk systems capture vapors from drums and other sources and vent to the atmosphere. Elephant trunk systems vent through EP 31047.

Process: 816 is located at Building 64 - Building 64 surge tank vents to the atmosphere.

Process: 817 is located at Building 64 - The AlCl3 addition system includes a transporter, cartridge filters, and bin. The AlCl3 transporter vents through a cartridge filter prior to discharging to atmosphere at EP 64006. The Upper AlCl3 Bin vents through a cartridge filter prior to discharging to atmosphere at EP 64007.

Process: MN1 is located at Building All - This process includes all of the individual Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in unit C-27018 that are subject to 40 CFR 63, Subpart FFFF (MON MACT). The MCPUs are organized based on a Family of Materials (FOM) basis. The
complete list of MCPUs, FOMs and operating scenarios is maintained in the Subpart FFFF Notification of Compliance Status (NOCS). Process MN1 and the Subpart FFFF NOCS include Group 1 process vent streams and controls, storage tanks, transfer racks, and heat exchange systems, as well as the storage, management and treatment of designated Group 1 wastewater streams. Changes to the MON MACT MCPUs, FOMs, or operating scenarios are documented within the NOCS on a semiannual basis and are included in the Subpart FFFF Semiannual reports. Monthly MON MACT batch emission calculations are completed in order to verify the Group 2 status of applicable process vents. Note: The MON MACT MCPUs utilize equipment and emission points that are already included under the Process codes designated for Title V permitting, which are organized by equipment rather than product. Emissions for Process MN1 are, therefore, included in the emissions for individual Process codes.

Emission unit C27035 - Emission unit C-27035 is comprised of several aboveground storage tanks which are used to store acids. The emission unit also contains three locations within the tank farm which allow for scrapping of acid to the chemical process sewer.

Emission unit C27035 is associated with the following emission points (EP):
27035, 27039, 27040
Process: 056 is located at Building 27 - Hydrochloric acid tanks are vented through the HCl tank vent scrubber to EP 27035. This process is subject to requirements under 40 CFR 63, Subparts SS and FFFF.

Process: 202 This process represents heat exchange systems (cooling water) within the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27035 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Heat exchange systems subject to Subpart FFFF are summarized in the Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 206 This process represents the management of Group 1 wastewater or residuals in containers. The Group 1 wastewater or residuals are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27035 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 208 This process represents the management of Group 1 wastewater in individual drain systems. The Group 1 wastewater streams are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27035 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 211 This process represents the management of MON maintenance wastewater streams from unit C-27035 that are subject to 40 CFR 63, Subpart F.

Process: 214 This process represents the management of Group 1 process wastewater in tanks. The Group 1 wastewater is generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27035 that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater storage tank determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 218 This process represents the treatment of Group 1 wastewater streams and/or residuals removed from Group 1 wastewater streams. The Group 1 wastewater or residuals are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit C-27035 that are regulated under 40 CFR
Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 221 This process represents any pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, instrumentation systems, and control devices or closed vent systems in the unit C-27035 processes that are subject to the leak detection and repair requirements in 40 CFR 63, Subpart UU for MON MACT (40 CFR 63, Subpart FFFF) compliance. Each piece of equipment to which Subpart UU applies is identified in the LeakDAHS system.

Process: 764 is located at Building 27 - Rail cars are vented through Acid Scrubber before venting to atmosphere (EP 27039). The A2/B2 bottoms is directed from the coolers directly to the chemical sewer.

Process: 765 is located at Building 27 - The MeCl railcar loading stations vent through the MeCl railcar eductor (EP 27040)

Process: MN2 This process includes all of the individual Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in unit C-27035 that are subject to 40 CFR 63, Subpart FFFF (MON MACT). The MCPUs are organized based on a Family of Materials (FOM). The complete list of MCPUs, FOMs and operating scenarios is maintained in the Subpart FFFF Notification of Compliance Status (NOCS). Process MN2 and the Subpart FFFF NOCS include Group 1 process vent streams and controls, storage tanks, transfer racks, and heat exchange systems, as well as the storage, management and treatment of designated Group 1 wastewater streams. Monthly MON MACT batch emission calculations are completed in order to verify the Group 2 status of applicable process vents. Note: The MON MACT MCPUs utilize equipment and emission points that are already included under the Process codes designated for Title V permitting, which are organized by equipment rather than product. Emissions for Process MN2 are, therefore, included in the emissions for individual Process codes.

Emission unit C61007 - Silicon grinding area and fines passivation area. In the silicon grinding area, silicon metal is ground, screened, and transferred to silos. In the fines passivation area, mixers are used to mix fines to neutralize and harden the material.

Emission unit C61007 is associated with the following emission points (EP): 61007, 61008, 61009, 61010, 61801, 61802, 61803, 61804, 61806, 61808

Process: 711 is located at Building 61 - The silicon grinding process includes silos, unloading stations, elevators, dust collectors, air slides, return air slides. The unloading elevator vents to a dust collector which vents to the atmosphere at EP 61007. The silo vents, air slides and return slides go to a dust collector which vents to atmosphere at EP 61008. The grinding elevator goes to a dust collector which vents to the atmosphere at EP 61009. Vents from Silos 001, 002 and 003 and the truck unloading station vent to a dust filter then to atmosphere through EP 61010.

Process: 768 is located at Building 618 - Fines Passivation Process: Fines are mixed with lignin and water for neutralization and hardening in the North and South plow mixers. The plow mixers vent through scrubbers and then to the atmosphere through emission points 61801 and 61802. This process also includes lignin, surfactant and solution make-up tanks, as well as shot hoppers, the FS day hopper, and the fines
storage hopper, which supply inputs to the fines passivation process.

Process: 812 is located at Building 618 - Rail car loading blower vents directly to atmosphere.

Emission unit C62008 - Chem-ops area which includes sources for production of methyl chlorosilanes (MCS2, MCS3, MCS4), thichlorosilane production (TCS) and distillation. The MCS vent Scrubbers and MCS Vent Incinerator are not included in this ent. They are in C-27018

Emission unit C62008 is associated with the following emission points (EP):
55001, 55005, 55006, 55007, 55009, 65001, 65002, 65003, 65005, 65006, 65008, 67005

Process: 818 is located at Building 55 - The Building 55 MCS 3 atmospheric vents include a catalyst feed hopper, cold oil storage tank, glycol receiver tank, reactor, primary cyclone, and refrigeration drum. The catalyst feed hopper vents directly to atmosphere at EP 55001. The cold oil storage tank has a conservation vent and vents to atmosphere at EP 55006. The glycol receiver tank has a conservation vent and vents to atmosphere at EP 55007. The reactor normally vents to the FBI or RKI through the TCS vent header and only vents to atmosphere at EP 55008 through a wash water overflow vent during washes only. The secondary refrigeration drums vent to atmosphere through a conservation vent at EP 55009.

Process: 820 is located at Building 65 - MCS2 atmospheric vents include storage tanks, receiver tank, refrigeration drum, hoppers with dust collectors and a catalyst vacuum transfer system. The north storage hopper and copper feed hopper vent through dust collector prior to venting to atmosphere at EPs 65006 and 65008. The glycol receiver vents directly to atmosphere at EP 65002. The cold HTO storage tank vents to atmosphere at EP 65003. The catalyst transfer vacuum system vents through EP 62008.

Emission unit C62014 - This unit consists of sources in the fumed silica production areas.

Emission unit C62014 is associated with the following emission points (EP):
68001, 68013

Process: 407 is located at Building 68 - The fumed silica operation includes reactors, catalyst containers, HCl absorbers, filters, conveyors, silos, surge drums, scrubber, vacuum bagger and tanks. The fumed silica scrubber system (68FSS) removes chlorine, hydrogen chloride and particulates from the 100 column and then vents through emission point 68001. The scrubber/column are subject to requirements under 40 CFR 63, Subpart NNNNN. The catalyst containers and feed surge drum also vent through the scrubber and then to atmosphere at EP 68001, EP 68008 or EP 68009. The conveyor system and silos vent through a filter and then to atmosphere at EP 68002. The filter vent and vacuum bagger vent to atmosphere through EP 68003. The propylene glycol surge tank vents to atmosphere at EP 68007.

Process: 813 is located at Building 68 - Building 68 storage and surge, solution make-up tank and drum working and breathing losses that vent to the atmosphere.

Process: 814 is located at Building 68 - Building 68 working losses from loading stations vent directly to atmosphere.

Process: 815 is located at Building 68 - Vapors from Building 68 processes that vent to atmosphere through sewer vents.
Emission unit ELISTS - This EU consists of lists of Processes, Emission Points & Emission Sources referenced in other EU Compliance Monitoring Activities.

Process: L01 is located at 1st floor, Building All - List of Processes subject to 40 CFR 63 Subpart SS [63.983(a, b, c & d), 63.990(a & b), 63.996, 63.996(d), 63.998(a)(2), 63.998(b & c), 63.998(c)(1 & 2) & 63.998(d)(1)]

EU-C27035: Proc - 056
EU-FINISH: Proc - 053 & 081

Process: L02 is located at 1st floor, Building All - List of Processes subject to 40 CFR 63 Subpart SS [63.988(a), 63.988(b)]

EU-C27018: Proc - 023-026, 083, 090 & 715

Process: L03 is located at 1st floor, Building All - List of Processes subject to 40 CFR 63 Subpart UU [63.1019, 63.1022, 63.1023(a, b & c), 63.1024(a, c, d, e & f), 63.1025(b, c & d), 63.1025(e)(1, 2 & 3), 63.1026, 63.1026(b)(d), 63.1026(c), 63.1027(b), 63.1027(c)(1 & 2), 63.1028, 63.1029, 63.1030, 63.1031(f), 63.1032, 63.1033, 63.1035, 63.1036, 63.1038(b & c) & 63.1039(a & b)]

EU-C27018: Proc - 220, Source FUGM1
EU-FINISH: Processes - 222, Source FUGM3.

Process: L04 is located at Building All - List of Emission Points subject to Part 212.10(c)(4)(i):

Process: L05 is located at 1st floor, Building All - List of Emission Points subject to Part 212.10(c)(4)(iii):

Process: L06 is located at 1st floor, Building All - List of Emission Points subject to Part 212.4(c) & Part 212.6(a):

EU-FINISH: EPs - 31001, 3200(6, 7, 8 & 9), 3201(6 & 7), 3300(2, 3, 4), 42012, 85002 & 85057.
EU-C27018: EPs - 14006, 24120, 24132, 31002, 31003, 31022, 31030, 32038, 37707, 37934, 55001, 57001, 57002, 57003, 61801, 62005, 62007, 62011, 78005, 97001, 97002 & 97003.
EU-C61007: EPs - 61007, 61008, 61009 & 61010.

EU-T13004: EPs 13007, 13011, 13013.

Exempt vents under 201-3.2(c)(27): 13007
 (44): 13011, 13012, 13013, 13015
 (40): 13016
 (27): 31001, 31002, 42007, 85057

32046 (controlled emissions from EPs 32023, 32024, 32011-32015) (Process 111)
85045 (Proc 182)
85046 (Process 175)

No reference to these EPs in the flow diagrams - 32002, 68005

Process: L07 is located at 1st floor, Building All - List of Emission Points & Processes subject to Part 227-1.3(a):

EU-HOFURN

EU-U28002: Proc - 408 409 & 410.

Process: L08 is located at 1st floor, Building All - List of Emission Points, Processes & Emission Sources subject to Part 229.5(d):

EU-C27018: WWT39, WWT40, 62T59, 62TBA & 76ACW.

EU-FINISH: 23APS, 37APS & 76PTA.

Process: L09 is located at Building AREA 96 - List of Processes subject to Part 229.3(e)(2)(v) which emit through EU C-27018 Processes 422 or 424:

Process: L10 is located at Building AREA 96 - List of Processes subject to Part 229.3(e)(2)(iv) which emit through EU C-27018 Processes 422 or 424:

Process: L11 is located at Building AREA 96 - List of Processes subject to 40 CFR 63 Subpart G Sections 139(c), 140, 143(e) & 143(g) which emit through EU C-27018 Processes 422, 424 or 425:

EU: W-97004: Process 705 ES/C MMNAS & MMSAS.

Process: L12 is located at Building AREA 96 - List ofProcesses subject to 40 CFR 63 Subpart G Sections 114(a)(4)(ii) which emit through EU C-27018 Process 423 ES/C RKICS:

EU: C-27018: Process 090.

Process: L13 is located at Building AREA 96 - List of Processes subject to 40 CFR 63 Subpart G Sections 114(a)(4)(ii) which emit through EU C-27018 Process 430 ES/C FBCS1:

EU: C-27018: Process 090.

Process: L14 is located at Building AREA 96 - List of Processes subject to 40 CFR 63 Subpart G Sections 114(a)(4)(ii) which emit through EU C-27018 Process 430 ES/C FBCS2:

EU: C-27018: Process 090.

Process: L15 is located at Building AREA 96 - List of Processes subject to 40 CFR 63 Subpart G Sections 114(a)(4)(i) which emit through EU C-27018 Process 430 ES/C IWS11, IWS12, IWS21, IWS22, IWS1A, IWS1B, IWS2A or IWS2B:

EU: C-27018: Process 090.

Process: L16 is located at Building AREA 96 - List of Processes subject to 40 CFR 63 Subpart G Sections 114(a)(1)(i) which emit through EU C-27018 Process 430 and ES/C 93FBI:

EU: C-27018: Process 090.

Process: L17 is located at Building AREA 96 - List of Processes subject to 40 CFR 63 Subpart G Sections 114(a)(1)(i) which emit through EU C-27018 Process 423 and ES/C 96RKI:

EU: C-27018: Process 090.

Process: L18 is located at Building All - List of Emergency Generators under Emission Unit E-GNRTR:

Generators < 500 HP [subject to 40 CFR 63 Subpart ZZZZ (RICE MACT)];

<table>
<thead>
<tr>
<th>Emission Point</th>
<th>Emission Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>28010</td>
<td>28EG1</td>
</tr>
<tr>
<td>28011</td>
<td>28EG2</td>
</tr>
<tr>
<td>28012</td>
<td>28EG3</td>
</tr>
<tr>
<td>80002</td>
<td>80EG1</td>
</tr>
<tr>
<td>80003</td>
<td>80EG2</td>
</tr>
<tr>
<td>85064</td>
<td>85EG1</td>
</tr>
<tr>
<td>97037</td>
<td>GEN01</td>
</tr>
<tr>
<td>97025</td>
<td>952E1</td>
</tr>
<tr>
<td>97026</td>
<td>952E2</td>
</tr>
<tr>
<td>51002</td>
<td>51EG3</td>
</tr>
</tbody>
</table>
Emission unit FINISH - Finishing - intermediate and final production of silicone products and materials including resins, fluids, dispersions, emulsions, heat curing elastomers, room temperature vulcanizing (rtv) elastomers, sealants, and treated fumed silica. Also includes various maintenance shops and individual maintenance sources (such as degreasers).

Emission unit FINISH is associated with the following emission points (EP):
21101, 23100, 23101, 24136, 24137, 24138, 24139, 24140, 24207, 24209, 24210, 24211, 24302, 24305, 24308, 24309, 24311, 24312, 24402, 24404, 24405, 24409, 24413, 24414, 24702, 24704, 24806, 24909, 24934, 24942, 24943, 24944, 24945, 24955, 24956, 24972, 27102, 28009, 29102, 30001, 30002, 30910, 30911, 30932, 30933, 30935, 31003, 32006, 32007, 32008, 32009, 32016, 32017, 32026, 32027, 32028, 32033, 32040, 32042, 32044, 32046, 32049, 32050, 33002, 33003, 33004, 33016, 33017, 33024, 33025, 33027, 33028, 33902, 33903, 33904, 33906, 33908, 33909, 33910, 37001, 37003, 37005, 37007, 37016, 37032, 37047, 37048, 37049, 37050, 37074, 37701, 37919, 37924, 37935, 37936, 37937, 37938, 37939, 37940, 37948, 38008, 41001, 41002, 41003, 41004, 41005, 42001, 42002, 42003, 42004, 42012, 42017, 42018, 42019, 42020, 42021, 61602, 61603, 71010, 76006, 76007, 78008, 78021, 78022, 78023, 78024, 78026, 78027, 78034, 78035, 78036, 78037, 78038, 78039, 85001, 85002, 85003, 85004, 85005, 85006, 85008, 85013, 85017, 85020, 85025, 85032, 85043, 85044, 85045, 85046, 85054, 85058, 85059, 85068, 85901, 85902, 85903, 85906, 85907, 85908, 97023

Process: 029 is located at Building 85 - The endcapper system makes fluids. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process also includes any associated cleanouts. The endcapper system vents to atmosphere through the vent head at EP 85906 or EP 85907.

Process: 053 is located at Building 76 - This process represents FOM 053, which is a miscellaneous organic chemical manufacturing unit (MCPu) that is regulated under 40 CFR Part 63, Subpart FFFF (Miscellaneous Organic Chemical Manufacturing)

Process: 058 is located at Building 42 - The Banbury I system includes a mill, tiller hopper, extruder and mixer. It is a batch system used to make silicone rubber. It may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR 63, Subpart FFFF are tracked under monthly MON MACT batch tracking and managed in process MN3. This process includes any associated cleanouts. The mill vents through EP 42001 and the mixer vents through EP 42012. The decanter vents through EP 42013. The Banbury Mixer vents through EP 42014. The drum purge vents through EP 42017. The drum purge manifold vents through EP 42018.
Process: 059 is located at Building 42 - The Banbury 2 system includes a mill, tiller hopper, extruder and mixer. It is a batch system used to make silicone rubber. It may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR 63, Subpart FFFF are tracked under monthly MON MACT batch tracking and managed in process MN3. This process includes any associated cleanouts. The mill vents through EP 42002 and the mixer vents through EP 42012. The decanter vents through EP 42013. The Banbury Mixer vents through EP 42014. The drum purge vents through EP 42017. The drum purge manifold vents through EP 42018.

Process: 060 is located at Building 42 - The Banbury 3 system includes a mill, tiller hopper, extruder and mixer. It is a batch system used to make silicone rubber. It may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR 63, Subpart FFFF are tracked under monthly MON MACT batch tracking and managed in process MN3. This process includes any associated cleanouts. The mill vents through EP 42003 and the mixer vents through EP 42012. The decanter vents through EP 42013. The Banbury Mixer vents through EP 42014. The drum purge vents through EP 42017. The drum purge manifold vents through EP 42018. The drum feed station vents through EP 42021. The liquid add station vents through EP 42020.

Process: 061 is located at Building 30 - Doughmixer 8 is a batch system that includes the vent condenser, receiver, conservation vent, exhaust system, doughmixer, and a light ends drum. The doughmixer may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. The doughmixer 8 and light ends drum vent through an exhaust system (EP 32016). Doughmixer 8 can also vent through the vent system (EP 32042). This process includes any associated cleanouts.

Process: 063 is located at Building 42 - The Banbury 4 system includes a mill, tiller hopper, extruder and mixer. It is a batch system used to make silicone rubber. It may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR 63, Subpart FFFF are tracked under monthly MON MACT batch tracking and managed in process MN3. This process includes any associated cleanouts. The mixer vents through EP 42012. Silicone Rubber Mill 4 vents through EP 42004. The decanter vents through EP 42013. The Banbury Mixer vents through EP 42014. The drum purge vents through EP 42017. The drum purge manifold vents through EP 42018.

Process: 064 is located at Building 30 - Doughmixer 3 is a batch mixer used in the production of various products including products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MON. Doughmixer 3 vents through a conservation vent to EP 32006. This process includes any associated cleanouts.

Process: 065 is located at Building 42 - The banbury filler vents, cyclone separator, bag dump stations, general vacuum system and hoffman vacuum systems are included in this process. Particulate emissions from these sources vent through a dust collector to EP 42012.

Process: 081 is located at Building 37 - The phenyl tetramer system consists of a hydrolyzer, condenser, knockout tank, receiver, dryer, product centrifuges, crystallizer, hopper, weigh tanks and hold tank. The phenyl tetramer system makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart
FFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN3. This process also includes any cleanouts. The phenyl tetramer hydrolyzer vents to a condenser system to atmosphere at EP 37001 or EP 37074. The phenyl tetramer dryer vents to atmosphere through a dust collector at EP 37005. The product centrifuges vent directly to atmosphere at EP 37003 and EP 37048. The crude centrifuges vent directly to atmosphere at EP 37049 and EP 37050. The crystallizer vents through a condenser to atmosphere at EP 37016. The hold tank vents directly to atmosphere at EP 37047. The centrifuge and hopper vent to atmosphere through EP 37701.

Process: 102 is located at Building 30 - The TFK 2 (treated filler kettle 2) system consists of the TFK 2 kettle, light ends receiver, condenser and recovery system. The treated filler system is a batch system that produces various grades of treated filler. It may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process also includes any associated cleanouts. The TFK 2 system vents through EP 32026.

Process: 111 is located at Building 30 - The vent dust collection system captures the particulates that escape from the atmospheric vents on TFK 1, TFK 2, TFK3, hoppers 1 through 5 as well as silos 1 through 6. This process also includes any associated cleanouts. Particulates vent through the dust collector EP 32046.

Process: 136 is located at Building 30 - Alkoxy catalyst feed tank, tote/drum stations, drum transfer stations, miscellaneous totes, hydride catalyst feed tank and the MTMS feed tank vent through conservation vents consisting of a nitrogen blanket, PCV and/or flame arrestor before discharging through EP 33024. The acetoxy feed tank vents through a conservation vent at EP 33016.

Note: This process represents a system which can supply feeds to the WP extruder systems included under Process Codes 176, 177 & 178.

Process: 157 is located at Building 30 - The TFK 3 (treated filler kettle 3) system consists of the kettle, light ends receiver, condenser, recovery system, scrubber and weigh tanks. The treated filler system is a batch system that produces various grades of treated filler. It may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process includes any associated cleanouts. The TFK 3 system vents through EP 32027. The light ends receiver system can also vent through EP 32028 (either using the scrubber or not) prior to venting. The tank loading Station vents through the scrubber (EP 32028).

Process: 168 is located at Building 24 - The east resin system consists of equipment from the east and south systems which includes wash tanks, receivers, condensers, body kettles, filter aid kettles, precoat tanks, blend tanks, hydrolyzers and weigh tanks. The east resin system makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN3. The south wash tank vents directly to atmosphere through EP 24205. The east hydrolyzer system vents to atmosphere through EP 24302. The east wash tank vents to atmosphere through EP 24305. The east body kettle vents through a condenser and receiver to atmosphere at EP 24308. The #4 Filter aid kettle vents to atmosphere through EP 24309. The east blend tank vents directly to atmosphere at EP 24311. The east silane weigh tank vents to atmosphere at EP 24312. The east body kettle, south wash tank, premix tank, wash tank, east hydrolyzer, blend tank, south body kettle vent through a receiver and condenser to atmosphere at EP 24413. The #5 FAK tank vents directly to atmosphere at EP 24704. The south hydrolyzer vents through the east and south hydrolysis packed gas.
New York State Department of Environmental Conservation
Permit Review Report
Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

absorption to atmosphere at EP 24945. The south body kettle receiver can vent through a hotwell and vacuum ejectors to atmosphere at EP 29455 or EP 24956. The south FAK vents through 24409. The resins weigh tank vents to atmosphere at EP 24404. The East hydrolyzer vents through the east and south scrubbers to atmosphere at EP 24944. The #12 FAK vents to atmosphere at EP 24702. This process includes any associated cleanouts.

Process: 170 is located at Building 30 - The doughmixer 9 system includes the vent condenser, receiver, conservation vent, exhaust system, doughmixer and a light ends drum. The doughmixer may make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. The doughmixer 9 and light ends drum vent through an exhaust system (EP 32017). This process includes any associated cleanouts. Doughmixer 9 can also vent through the vent system (EP 32050).

Process: 171 is located at Building 30 - The doughmixer 7 system includes the vent condenser, receiver, exhaust system, doughmixer, and the 81904LT drum. The doughmixer makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. The doughmixer 7, 81904LT drum and light ends drum vent through an exhaust system (EP 32009). This process includes any associated cleanouts. Doughmixer 7 can also vent through the vent system (EP 32049).

Process: 173 is located at Building 78 - The TFE system is a continuous batch system that consists of the light ends tank, tanker slots, feed tanks, deaerator, preheaters, surge tank, process condenser, vacuum system, catalyst bomb and charge tank. It may make products subject to 40 CFR 63 Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process may operate in two different modes: initial startup, as well as a semi-continuous operation. This process includes any associated cleanouts. The TFE system vents through EPs 78008, 78021, 78022, 78023, 78033, 78034, 78035.

Process: 174 is located at Building 30 - The doughmixer 6 system includes a condenser, receiver, conservation vent, exhaust system, doughmixer, ECH drum and a light ends drum. The doughmixer makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. Doughmixer 6, the ECH drum and the light ends drum vent through an exhaust system (EP 32008). This process includes any associated cleanouts. Doughmixer 6 can also vent through the vent system (EP 32040).

Process: 175 is located at Building 85 - The WP-3 System includes an extruder, knockout pot gravity feeders, drumming stations, water separator, hoppers and vacuum system. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN3. This process includes any associated cleanouts. The WP-3 system vents through a dust collector (EP 85002). The extruder can also vent through a water separator system to EP 85013. The high speed drumming line for the WP-3 system vents through vent header to EP 85906 or EP 85907. The southwest hopper vents through a dust collector to atmosphere at EP 85067. The northwest hopper vents through a dust collector to atmosphere at EP 85068.

Process: 176 is located at Building 30 - The WP-1 system consists of storage/feed tanks, delivery pumps, hoppers, silos and extruder used to make RTV sealants. It may be used to make products subject to 40 CFR
63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process also includes any associated cleanouts. The WP-1 system vents through a dust collector (EP 33004) or through EP 33017. Inputs to the WP-1 system may be supplied via the feed system described under Process Code 136.

Process: 177 is located at Building 30 - The WP-4 system consists of storage/feed tanks, delivery pumps, hoppers and an extruder used to make RTV sealants. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked and managed under monthly MON MACT batch tracking as described in Process MN3. This process also includes any associated cleanouts. The WP-4 system vents through a dust collector (EP 33004) or through EP 33017. Inputs to the WP-4 system may be supplied via the feed system described under Process Code 136.

Process: 178 is located at Building 30 - The WP-5 system consists of storage/feed tanks, delivery pumps, pigment totes and stations, hoppers and an extruder used to make RTV sealants. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked and managed under monthly MON MACT batch tracking as described in Process MN3. This process also includes any associated cleanouts. The WP-5 system vents through a dust collector (EP 33004) or through EP 33027 and 33028. Inputs to the WP-5 system may be supplied via the feed system described under Process Code 136.

Process: 182 is located at Building 85 - The WP-2 system includes an extruder, knockout pot gravity feeders, drumming stations, water separator, hoppers and a vacuum system. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked and managed under monthly MON MACT batch tracking and managed as described in Process MN3. This process includes any associated cleanouts. The WP-2 system vents through a dust collector (EP 85002). The extruder can also vent through a water separator system to EP 85004. The hopper vents through the south dust collector to EP 85045. The southwest hopper vents through a dust collector to atmosphere at EP 85067.

Process: 183 is located at Building 30 - The doughmixer 5 system includes the condenser, receiver, conservation vent, exhaust system, doughmixer and a light ends drum. The doughmixer makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process includes any associated cleanouts. Doughmixer 5 and the light ends drum vent through an exhaust system (EP 32007). Doughmixer 5 can also vent through the vent system (EP 32044).

Process: 190 is located at Building 85 - The treated filler kettle (TFK) 4 system is a batch system that includes treated filler kettle, knockout tank and spray column. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process includes any associated cleanouts. The TFK 4 system vents through a spray column to EP 85008. The extruder can also vent through a water separator system to EP 85013.

Process: 191 is located at Building 85 - The treated filler kettle (TFK) 5 system is a batch system that includes the treated filler kettle, receiver, heat exchanger and overhead condenser. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this
system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batching tracking and managed as described in Process MN3. This process includes any associated cleanouts. The TFK 5 system vents through a spray column to EP 85008. The extruder can also vent through a water separator system to EP 85013.

Process: 203 This process represents heat exchange systems (cooling water) within the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit F-INISH that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Heat exchange systems subject to Subpart FFFF are summarized in the Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 204 This process represents the management of Group 1 wastewater or residuals in containers. The Group 1 wastewater or residuals are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit F-INISH that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 207 This process represents the management of Group 1 wastewater in individual drain systems. The Group 1 wastewater streams are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit F-INISH that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 212 This process represents the management of MON maintenance wastewater streams from unit F-INISH that are subject to 40 CFR 63, Subpart F.

Process: 215 This process represents the management of Group 1 process wastewater in tanks. The Group 1 wastewater is generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit F-INISH that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater storage tank determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 219 This process represents the treatment of Group 1 wastewater streams and/or residuals removed from Group 1 wastewater streams. The Group 1 wastewater or residuals are generated by the Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in Unit F-INISH that are regulated under 40 CFR Part 63, Subpart FFFF (MON MACT). Group 1 wastewater determinations are included in the Subpart FFFF Notification of Compliance Status (original NOCS dated 10/8/08 and semiannual revisions).

Process: 222 This process represents any pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, instrumentation systems, and control devices or closed vent systems in the Unit F-INISH processes that are subject to the leak detection and repair requirements in 40 CFR 63, Subpart UU for MON MACT (40 CFR 63, Subpart FFFF) compliance. Each piece of equipment to which Subpart UU applies is identified in the LeakDAHS system.

Process: 708 is located at Building 30 - The Molding Compounds Area Solids Handling Baghouse 2 vents through EP 33002. The grinding conveying dust pick up vents through the Molding Compounds Area Solids Handling Baghouse 3 vents to atmosphere at EP 33003. The pill room exhaust hoods vent through the Molding Compounds Area Solids Handling Baghouse 1 to atmosphere at EP 31003.

Process: 729 is located at Building 71 - Transfer Truck loading/unloading vents to atmosphere through a scrubber.
Process: 751 is located at Building 23 - Building 23 and Building 23 Tank Farm storage tank working and breathing losses that vent to atmosphere. All tanks have a nitrogen blanket or are under pressure. Additionally, some tanks also have a pressure control valve present.

Process: 771 is located at Building 24 - Vapors from Building 24 processes that vent to chemical sewer

Process: 778 is located at Building 37 - Vapors from Building 37 processes that vent to atmosphere through sewer vents

Process: 779 is located at Building 24 - The west system consists includes a hydrolyzer, condenser, and wash tank. The west resin system makes products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in process MN3. The hydrolyzer condenser vents through EP 24402. The west hydrolyzers can also vent through the east body kettle condenser and receiver to atmosphere at EP 24413. The wash tank has a nitrogen blanket and vents to atmosphere at EP 24405. This process includes any associated cleanouts.

Process: 780 is located at Building 24 - Building 24 Storage tank working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blanket or are under pressure. Additionally, some tanks also have a pressure control valve and/or flame arrestor present. The 5500 D/E storage tank vents to a vapor bin and then to atmosphere at EP 24972.

Process: 781 is located at Building 37 - Building 37 storage tank working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blanket. Additionally, some tanks also have a pressure control valve present. The APS Tank vents through a vent condenser and through the 1500 gallon hydrolyzer condenser system prior to venting to atmosphere at EP 37001 or EP 37074. It can also vent through a vent condenser and vent eductor to atmosphere at EP 37948. These sources belong to emission unit F-INISH.

Process: 789 is located at Building 24 - The south system consists of a filter aid kettle, precoat tank, body kettle and blend tanks. The system may make products subject to 40 CFR 63 subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs are tracked un monthly MON MACT batch tracking and managed as described in process MN3. The filter aid kettle vents through a conservation vent to atmosphere at EP 24209. The precoat tank has a conservation vent and vents through EP 24210. The blend tank has a conservation vent and vent to atmosphere at EP 24211. The body kettle vents through the east body kettle receiver and condenser to atmosphere at EP 24413.

Process: 796 is located at Building 78 - Elephant trunk systems capture vapors from drums and other sources and vent to the atmosphere. Elephant trunk systems vent through EPs 78036, 78037, 78038 and 78039.

Process: 798 is located at Building 85 - The high speed drum line system includes process tanks. It may be used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPs and are subject to 40 CFR Part 63 Subpart FFFF, are tracked under monthly MON MACT batch tracking and managed as described in Process MN3. This process includes any associated cleanouts. The pigment tanks vent through a conservation vent to atmosphere at EP 85058.
Process: 799 is located at Building 85 - The HSC3 Caulker Filling machine vents to a header and to atmosphere through EP 85908.

Process: 800 is located at Building 85 - Building 85 storage tanks working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blanket or are under pressure. Additionally, some tanks also have a pressure control valve present. Some tanks vent directly to atmosphere through the vent header to EP 85906 or EP 85907. Building 85 storage vent through TFK venturi scrubber directly to atmosphere (EP 85001) or to vent header (EP 85906 or 85907).

Process: 802 is located at Building 30 - Building 30 storage tank working and breathing losses that vent to the atmosphere. All tanks have a nitrogen blanket. Additionally, some tanks also have a pressure control valve present.

Process: 804 is located at Building 85 - Elephant trunk systems capture vapors from drums and other sources and vent through main dust collector to EP 85002.

Process: 805 is located at Building 85 - The HSRF process includes the HSRF Caulker Filling machine as well as process tanks. The caulker filling machines vent to a header and to atmosphere through EP 85908. The pigment tanks vent through a conservation vent to atmosphere at EP 85058.

Process: 808 is located at Building 41 - The 2000 gallon emulsion process includes the silicone oil feed tank, the emulsifier blend tank, the emulsion surge tank and the 2000 gallon emulsion tank. The process receives inputs from Building 37 and/or from in-house (bldg. 41). The system is used to make products subject to 40 CFR 63, Subpart FFFF as well as non MON MACT products. Products made on this system that include HAPS are tracked under monthly MON MACT batch tracking and managed as described in process MN3. This process also includes any associated cleanouts. The 2000 gallon emulsion tank vents through EP 41001. Associated tanks and charging systems vent through EP 41003-41007.

Process: DEG Maintenance shop degreasers. Cold cleaning solvent degreasing units that use a petroleum distillate solvent and are subject to requirements under 6 NYCRR Part 226.

Process: MN3 "This process includes all of the individual Miscellaneous Organic Chemical Manufacturing Process Units (MCPUs) in unit F-INISH that are subject to 40 CFR 63, Subpart FFFF (MON MACT). The MCPUs are organized based on a Family of Materials (FOM). The complete list of MCPUs, FOMs and operating scenarios is maintained in the Subpart FFFF Notification of Compliance Status (NOCS). Process MN3 and the Subpart FFFF NOCS include Group 1 process vent streams and controls, storage tanks, transfer racks, and heat exchange systems, as well as the storage, management and treatment of designated Group 1 wastewater streams. Changes to the MON MACT MCPUs, FOMs, or operating scenarios are documented within the NOCS on a semiannual basis and are included in the Subpart FFFF Semiannual reports. Monthly MON MACT batch emission calculations are completed in order to verify the Group 2 status of applicable process vents.

Note: The MON MACT MCPUs utilize equipment and emission points that are already included under the Process codes designated for Title V permitting, which are organized by equipment rather than product. Emissions for Process MN3 are, therefore, included in the emissions for individual Process codes".
Emission unit HOFURN - This unit consists of additional hot oil furnaces not already included in another emission unit.

Emission unit HOFURN is associated with the following emission points (EP):
21012, 35027, 62016, 85063
Process: 418 Operation of Hot Oil Furnaces

Emission unit T13004 - Vapors and particulates are vented to the atmosphere outside of building 13 at different emissions points. These include process, filter, and local extraction discharges. Vapors from building 12 30 mm WP extruder are vented to atmosphere.

Emission unit T13004 is associated with the following emission points (EP):
12004, 13300
Process: PP0 is located at Building 13 - Ventilation to remove vapors from pilot plant systems including a 100 gallon reactor system, a 50 gallon reactor system, a hardcoat system, and a TFE system

Emission unit U28002 - Emission Unit U28002 consists of Boilers 13 and 18.

Emission unit U28002 is associated with the following emission points (EP):
28002, 28006, 28020
Process: 408 is located at Building 28 - Natural gas is combusted in Boiler 13. Boiler 13 was manufactured by Combustion Engineering and has a maximum heat input rating of 122 MMBtu/hr. It is equipped with a low NOx burner and is exhausted to the atmosphere partially through a condensing heat exchanger (EP 28020,) and partially through a steel stack (EP 28002). The boiler is used to generate steam for both process use and space heating. Boiler 13 is classified as a large boiler under 6NYCRR Part 227-2 as revised 6/2010.

Process: 410 is located at Building 28 - Natural gas is combusted in Boiler 18. Boiler 18 is a Zurn Keystone boiler and has a maximum heat input rating of 308 MMBtu/hr. It is equipped with a low NOx burner and is exhausted to the atmosphere partially through a condensing heat exchanger (EP 28020,) and partially through a steel stack (EP 28006). The boiler is used to generate steam for both process use and space heating. Boiler 18 is classified as a very large boiler under 6NYCRR Part 227-2 as revised 6/2010. Boiler 18 utilizes a CEMS for NOx and is subject to requirements under 40CFR 60 Subpart Db.

Emission unit U28003 - Emission Unit U28003 consists of boilers 14, 15, 16, and 17.

Emission unit U28003 is associated with the following emission points (EP):
28003, 28004, 28005
Process: 413 is located at Building 28 - Natural gas is combusted in Boiler 15. Boiler 15 was manufactured by Cleaver Brooks and has a maximum heat input rating of 76.9 MMBtu/hr. It is equipped with a low NOx burner and is exhausted directly to the atmosphere through a common stack shared with
Boiler 14 (EP 28003). The boiler is used to generate steam for both process use and space heating. Boiler 15 is classified as a mid-size boiler under 6NYCRR Part 227-2 as revised 6/2010.

Process: 415 is located at Building 28 - Natural gas is combusted in Boiler 14. Boiler 14 was manufactured by Babcock and Wilcox and has a maximum heat input rating of 171 MMBtu/hr (125,000 lb/hr steam). It is equipped with a low NOx burner and is exhausted directly to the atmosphere through a common stack shared with Boiler 15 (EP 28003). The boiler is used to generate steam for both process use and space heating. Boiler 14 is classified as a large boiler under 6NYCRR Part 227-2 as revised 6/2010.

Process: 416 is located at Building 28 - Natural gas is combusted in Boiler 17. Boiler 17 is a Keeler boiler with a maximum heat input rating of 49.3 MMBtu/hr (40,000 lb/hr steam). It is exhausted directly to the atmosphere through a steel stack (EP 28004). The boiler is used to generate steam for both process use and space heating. Boiler 17 is classified as a mid-size boiler under 6NYCRR Part 227-2 as revised 6/2010. This boiler has a NOx RACT cap to comply with 6NYCRR Part 227-2.

Process: 417 is located at Building 28 - Natural gas is combusted in Boiler 16. Boiler 16 is a Keeler boiler with a maximum heat input rating of 49.3 MMBtu/hr (40,000 lb/hr steam). It is exhausted directly to the atmosphere through a steel stack (EP 28005). The boiler is used to generate steam for both process use and space heating. Boiler 16 is classified as a mid-size boiler under 6NYCRR Part 227-2 as revised 6/2010. This boiler has a NOx RACT cap to comply with 6NYCRR Part 227-2.

Emission unit W97004 - This Emission Unit is the wastewater treatment process system of the waste handling area. The wastewater treatment plant is a physical/chemical treatment system consisting of pH neutralization, oil and grease separation, clarification, and air stripping operations.

Emission unit W97004 is associated with the following emission points (EP):
- W97004, 97005, 97008, 97011, 97012, 97013, 97015, 97016, 97017, 97018, 97019, 97020, 97021, 97042, 97043, 97044, 97060, 97063, 97064

Process: 705 is located at Building AREA 96 - WWTP Tank Farm Operation: The WWTP Tank Farm stores and processes liquid wastes such as APS, NPS, silanes and silicones/emulsions that are generated in other production areas of the plant until they can either be incinerated or biologically treated. Silane and slurry tanks (sources WWT61, WWT62, WWT39, WWT40, WW26A, WW26B) at the WWTP are vented through the WTP Tank Farm Vent Header and incinerated in either the RKI (process 422) or the FBI (process 424). The MON MACT Air Strippers (sources MNNAS, MMSAS), the MON MACT Equalization Tank (source 40KEQ) and the Vent Surge Tank (source WTVST) are also vented through a header to the incinerators. The remaining tanks all have nitrogen blankets and may be equipped with pressure control valves. Some of the tanks may be used to handle Group 1 wastewaters subject to 40CFR 63, Subpart FFFF and are managed as described under Process MN1 and the applicable requirements for processes 213-215 and 217-219.

Process: 745 is located at Building AREA 96 - Biological Wastewater Treatment System: The Bio Reactor system is an activated sludge process that receives influents of pretreated wastewater, APS and containment water. Bio Reactors T-20 and T-21 (sources BIOR1, BIOR2) consist of aeration basins and integral clarifiers that are operated in parallel. The overflow from the primary treatment clarifiers and T-507 is stripped and transferred to the Bio Equalization Tank (T-505) prior to flowing to the Bio Reactors. The APS waste is mixed sequentially in three equalization tanks (T-17, T-18, T-19) prior to being used as food in the Bio Reactors. Non-contact cooling water/clean storm water sewers can be diverted to the containment
tanks (T-502, T-503, T-504, T-506). The waste sludge subsystem is used to remove excess sludge from the Bio Reactors. The Bio Reactors may be used to handle Group 1 wastewaters subject to 40CFR 63, Subpart FFFF and are managed as described under processes MN1, MN2, and MN3 and the applicable requirements for processes 213-215 and 217-219.

Process: 825 is located at Building AREA 96 - Primary Wastewater Treatment Plant: Wastewater from plant processes is treated prior to discharge to the river. The system consists of the API wet well (neutralizer), API oil/water separator, two API decant tanks and clarifiers which operate in series. Underflow from the clarifiers is directed to the thickener and overflow goes to the T-507 tank. Lime, caustic and polymers are added to the treatment system from feed tanks as needed. The clarifier air strippers (sources ST100 and ST101) are used to remove volatile organic compounds from the wastewater in T-507 prior to it being sent to secondary treatment in the biological treatment system. Effluent from T-507 may also be directed to the back neutralizers. The clarifier strippers normally vent to the incinerators through the clarifier air stripper header but may also vent to atmosphere at EP 97013 or through incinerator purge vents at EP 97015 and 97016. The stripper system is subject to regulation under 40 CFR 63, Subpart G.

Title V/Major Source Status
MOMENTIVE PERFORMANCE MATERIALS is subject to Title V requirements. This determination is based on the following information:
The facility is major for the following contaminants:

<table>
<thead>
<tr>
<th>Code</th>
<th>Substance</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0NY502-00-0</td>
<td>40 CFR 60-63 – TOTAL ORGANIC COMPOUNDS (TOC)</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000064-19-7</td>
<td>ACETIC ACID</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000075-36-5</td>
<td>ACETYL CHLORIDE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000071-43-2</td>
<td>BENZENE</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>000630-08-0</td>
<td>CARBON MONOXIDE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>007782-50-5</td>
<td>CHLORINE</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>007440-48-4</td>
<td>COBALT</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>000067-64-1</td>
<td>DIMETHYL KETONE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000071-55-6</td>
<td>ETHANE, 1,1,1-TRICHLORO</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>000064-17-5</td>
<td>ETHYL ALCOHOL (ETHANOL)</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>001000-41-4</td>
<td>ETHYLBENZENE</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>0NY100-00-0</td>
<td>HAP</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000541-05-9</td>
<td>HEXAMETHYLCYCLOTRISILOXANE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000999-97-3</td>
<td>HEXAMETHYLDISILAZANE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000107-46-0</td>
<td>HEXAMETHYLDISILOXANE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000110-54-3</td>
<td>HEXANE</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>001333-74-0</td>
<td>HYDROGEN</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>007647-01-0</td>
<td>HYDROGEN CHLORIDE</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>000067-63-0</td>
<td>ISOPROPYL ALCOHOL</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000067-56-1</td>
<td>METHYL ALCOHOL</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>000074-87-3</td>
<td>METHYL CHLORIDE</td>
<td>>= 10 tpy</td>
</tr>
<tr>
<td>000075-79-6</td>
<td>METHYLTRICHLORSILANE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>001185-55-3</td>
<td>METHYLTRIMETHOXYSILANE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>010102-44-0</td>
<td>NITROGEN DIOXIDE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000556-67-2</td>
<td>OCTAMETHYLCYCLOTEXTRA SILOXANE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>0NY210-00-0</td>
<td>OXIDES OF NITROGEN</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>0NY075-00-0</td>
<td>PARTICulates</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>0NY075-00-5</td>
<td>PM-10</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>068479-14-1</td>
<td>SILANE, CHLORO METHYL DERIVS</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>000993-07-7</td>
<td>SILANE, TRIMETHYL-</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>063148-62-9</td>
<td>SILOXANES AND SILICONES,DI-ME</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>007446-09-5</td>
<td>SULFUR DIOXIDE</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>0NY998-00-0</td>
<td>VOC</td>
<td>>= 250 tpy but < 75,000 tpy</td>
</tr>
<tr>
<td>001330-20-7</td>
<td>XYLENE, M, O & P MIXT.</td>
<td>>= 10 tpy</td>
</tr>
</tbody>
</table>
Program Applicability
The following chart summarizes the applicability of MOMENTIVE PERFORMANCE MATERIALS with regards to the principal air pollution regulatory programs:

<table>
<thead>
<tr>
<th>Regulatory Program</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD</td>
<td>NO</td>
</tr>
<tr>
<td>NSR (non-attainment)</td>
<td>NO</td>
</tr>
<tr>
<td>NESHAP (40 CFR Part 61)</td>
<td>YES</td>
</tr>
<tr>
<td>NESHAP (MACT - 40 CFR Part 63)</td>
<td>YES</td>
</tr>
<tr>
<td>NSPS</td>
<td>YES</td>
</tr>
<tr>
<td>TITLE IV</td>
<td>NO</td>
</tr>
<tr>
<td>TITLE V</td>
<td>YES</td>
</tr>
<tr>
<td>TITLE VI</td>
<td>NO</td>
</tr>
<tr>
<td>RACT</td>
<td>YES</td>
</tr>
<tr>
<td>SIP</td>
<td>YES</td>
</tr>
</tbody>
</table>

NOTES:
PSD Prevention of Significant Deterioration (40 CFR 52, 6 NYCRR 231-7, 231-8) - requirements which pertain to major stationary sources located in areas which are in attainment of National Ambient Air Quality Standards (NAAQS) for specified pollutants.

NSR New Source Review (6 NYCRR 231-5, 231-6) - requirements which pertain to major stationary sources located in areas which are in non-attainment of National Ambient Air Quality Standards (NAAQS) for specified pollutants.

NESHAP National Emission Standards for Hazardous Air Pollutants (40 CFR 61, 6 NYCRR 200.10) - contaminant and source specific emission standards established prior to the Clean Air Act Amendments of 1990 (CAA) which were developed for 9 air contaminants (inorganic arsenic, radon, benzene, vinyl chloride, asbestos, mercury, beryllium, radionuclides, and volatile HAPs).

MACT Maximum Achievable Control Technology (40 CFR 63, 6 NYCRR 200.10) - contaminant and source specific emission standards established by the 1990 CAAA. Under Section 112 of the CAAA, the US EPA is required to develop and promulgate emissions standards for new and existing sources. The standards are to be based on the best demonstrated control technology and practices in the regulated industry, otherwise known as MACT. The corresponding regulations apply to specific source types and contaminants.

NSPS New Source Performance Standards (40 CFR 60, 6 NYCRR 200.10) - standards of performance for specific stationary source categories developed by the US EPA under Section 111 of the CAAA. The standards apply only to those stationary sources which have been constructed or modified after the regulations have been proposed by publication in the Federal Register and only to the specific contaminant(s) listed in the regulation.
Title IV Acid Rain Control Program (40 CFR 72 thru 78, 6 NYCRR 201-6) - regulations which mandate the implementation of the acid rain control program for large stationary combustion facilities.

Title VI Stratospheric Ozone Protection (40 CFR 82, Subpart A thru G, 6 NYCRR 200.10) - federal requirements that apply to sources which use a minimum quantity of CFC’s (chlorofluorocarbons), HCFC’s (hydrofluorocarbons) or other ozone depleting substances or regulated substitute substances in equipment such as air conditioners, refrigeration equipment or motor vehicle air conditioners or appliances.

RACT Reasonably Available Control Technology (6 NYCRR Parts 212-3, 226, 227-2, 228, 229, 230, 232, 233, 234, 235, 236) - the lowest emission limit that a specific source is capable of meeting by application of control technology that is reasonably available, considering technological and economic feasibility. RACT is a control strategy used to limit emissions of VOC’s and NOX for the purpose of attaining the air quality standard for ozone. The term as it is used in the above table refers to those state air pollution control regulations which specifically regulate VOC and NOX emissions.

SIP State Implementation Plan (40 CFR 52, Subpart HH, 6 NYCRR 200.10) - as per the CAAA, all states are empowered and required to devise the specific combination of controls that, when implemented, will bring about attainment of ambient air quality standards established by the federal government and the individual state. This specific combination of measures is referred to as the SIP. The term here refers to those state regulations that are approved to be included in the SIP and thus are considered federally enforceable.

Compliance Status
Facility is in compliance with all requirements.

SIC Codes
SIC or Standard Industrial Classification code is an industrial code developed by the federal Office of Management and Budget for use, among other things, in the classification of establishments by the type of activity in which they are engaged. Each operating establishment is assigned an industry code on the basis of its primary activity, which is determined by its principal product or group of products produced or distributed, or services rendered. Larger facilities typically have more than one SIC code.

<table>
<thead>
<tr>
<th>SIC Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2819</td>
<td>INDUSTRIAL INORGANIC CHEMICALS</td>
</tr>
<tr>
<td>2821</td>
<td>PLASTICS MATERIALS AND RESINS</td>
</tr>
<tr>
<td>2822</td>
<td>SYNTHETIC RUBBER</td>
</tr>
<tr>
<td>2869</td>
<td>INDUSTRIAL ORGANIC CHEMICALS, NEC</td>
</tr>
</tbody>
</table>

SCC Codes
SCC or Source Classification Code is a code developed and used by the USEPA to categorize processes which result in air emissions for the purpose of assessing emission factor information. Each SCC represents a unique process or function within a source category logically associated with a point of air pollution emissions. Any operation that causes air pollution can be represented by one or more SCC’s.

<table>
<thead>
<tr>
<th>SCC Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-02-006-01</td>
<td>EXTERNAL COMBUSTION BOILERS - INDUSTRIAL</td>
</tr>
<tr>
<td></td>
<td>INDUSTRIAL BOILER - NATURAL GAS</td>
</tr>
<tr>
<td></td>
<td>Over 100 MBtu/Hr</td>
</tr>
<tr>
<td>1-02-006-02</td>
<td>EXTERNAL COMBUSTION BOILERS - INDUSTRIAL</td>
</tr>
</tbody>
</table>
Facility Emissions Summary
In the following table, the CAS No. or Chemical Abstract Service code is an identifier assigned to every chemical compound. [NOTE: Certain CAS No.’s contain a ‘NY’ designation within them. These are not true CAS No.’s but rather an identification which has been developed by the department to identify groups of contaminants which ordinary CAS No.’s do not do. As an example, volatile organic compounds or VOC’s are identified collectively by the NY CAS No. 0NY998-00-0.] The PTE refers to the Potential to Emit. This is defined as the maximum capacity of a facility or air contaminant source to emit any air
contaminant under its physical and operational design. Any physical or operational limitation on the capacity of the facility or air contamination source to emit any air contaminant, including air pollution control equipment and/or restrictions on the hours of operation, or on the type or amount or material combusted, stored, or processed, shall be treated as part of the design only if the limitation is contained in federally enforceable permit conditions. The PTE for each contaminant that is displayed represents the facility-wide PTE in tons per year (tpy) or pounds per year (lbs/yr). In some instances the PTE represents a federally enforceable emissions cap or limitation for that contaminant. The term ‘HAP’ refers to any of the hazardous air pollutants listed in section 112(b) of the Clean Air Act Amendments of 1990. Total emissions of all hazardous air pollutants are listed under the special NY CAS No. 0NY100-00-0. In addition, each individual hazardous air pollutant is also listed under its own specific CAS No. and is identified in the list below by the (HAP) designation.

<table>
<thead>
<tr>
<th>Cas No.</th>
<th>Contaminant</th>
<th>PTE lbs/yr</th>
<th>PTE tons/yr</th>
<th>Actual lbs/yr</th>
<th>Actual tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>000075-65-0</td>
<td>2-METHYL-2-PROANOL</td>
<td>1865.31</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000092-52-4</td>
<td>1, 1 BIPHENYL</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000079-34-5</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000057-14-7</td>
<td>1,1-DIMETHYLHYDRAZINE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000120-82-1</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000084-74-2</td>
<td>1,2-BENZENEDICARBOXYLIC ACID, DIBUTYL ESTER</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000120-80-9</td>
<td>1,2-BENZENEDIOL</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000107-06-2</td>
<td>1,2-DICHLOROETHANE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000107-21-1</td>
<td>1,2-ETHANEDIOL</td>
<td>31.00</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000108-38-3</td>
<td>1,3 DIMETHYLBENZENE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000095-80-7</td>
<td>1,3-BENZENEDIAMINE, E, 4-METHYL-</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000106-99-0</td>
<td>1,3-BUTADIENE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000126-99-8</td>
<td>1,3-BUTADIENE, 2-CHLORO-</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002627-95-4</td>
<td>1,3-DIETHENYL-1,1,3,3-TETRAMETHYLDISILOXANE</td>
<td>3481.09</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000085-44-9</td>
<td>1,3-ISOBENZOFURANDIONE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000123-31-9</td>
<td>1,4-BENZENEDIOL</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000123-91-1</td>
<td>1,4-DIETHYLENEDIODIOXIDE</td>
<td>12.96</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000592-41-6</td>
<td>1-HEXENE C6H12</td>
<td>20091.9</td>
<td>100.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000098-86-2</td>
<td>1-PHENYLETHANE</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000542-75-6</td>
<td>1-PROPENE, 1,3-DICHLORO-2,4, DINITRO</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000121-14-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance Code</td>
<td>Substance Name</td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000051-28-5</td>
<td>TOLUENE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000088-06-2</td>
<td>2,4,6 DNITROPHENOL</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000108-31-6</td>
<td>2,5 - FURANDIONE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000053-96-3</td>
<td>2- ACETYLAMINOFLUORENE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000078-59-1</td>
<td>2-CYCLOHEXEN-1-ONE, 3,5,5-TRIMETHYL</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001589-47-5</td>
<td>2-METHOXY-1-PROPANOL</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000095-48-7</td>
<td>2-METHYLPHENOL</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000108-10-1</td>
<td>2-PENTANONE, 4-METHYL</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000107-98-2</td>
<td>2-PROPANOL, 1-METHOXY</td>
<td>4669.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000079-10-7</td>
<td>2-PROPENOIC ACID</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000080-62-6</td>
<td>2-PROPENOIC ACID, 2-METHYL, METHYL ESTER</td>
<td>415.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000140-88-5</td>
<td>2-PROPENOIC ACID, ETHYL ESTER</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000919-30-2</td>
<td>3(TRIETHOXYSILYL)-1-PROPA NAMINE</td>
<td>959.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000119-90-4</td>
<td>3,3'-DIMETHOXYBENZIDINE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000107-05-1</td>
<td>3-CHLORO-1-PROPENE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000101-77-9</td>
<td>4,4'-DIAMINODIPHENYLMETHANE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000101-14-4</td>
<td>4,4'-METHYLENE BIS(2-CHLOROANILINE)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0NY502-00-0</td>
<td>40 CFR 60-63 - TOTAL ORGANIC COMPOUNDS (TOC)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000060-11-7</td>
<td>4- DIMETHYLAMINOAZOBENZENE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000092-93-3</td>
<td>4- NITROBIPHENYLACETALDEHYDE</td>
<td>242.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000075-07-0</td>
<td>ACETAMIDE</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000060-35-5</td>
<td>ACETIC ACID</td>
<td>18448.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000064-19-7</td>
<td>ACETIC ACID ETHENYL ESTER</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000108-05-4</td>
<td>ACETIC ACID, CHLORO</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000079-11-8</td>
<td>ACETIC ACID, DIANHYDRI</td>
<td>233.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance Description</td>
<td>Code</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE W/ SILICIC ACID (H4SiO4)BIS(1,1-DIME)</td>
<td>000075-05-8</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACETONITRILE</td>
<td>000075-36-5</td>
<td>5867.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACETYL CHLORIDE</td>
<td>000107-02-8</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA-CHLOROACETOPHENONE</td>
<td>000532-27-4</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMMONIA</td>
<td>007664-41-7</td>
<td>29334.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANILINE</td>
<td>000062-53-3</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTIMONY</td>
<td>007440-36-0</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARSENIC</td>
<td>007440-38-2</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASBESTOS</td>
<td>001332-21-4</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZIRIDINE, 2-METHYL</td>
<td>000075-55-8</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENAMINE, 2-METHOXY</td>
<td>000095-53-4</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENAMINE, N, N-DIMETHYL</td>
<td>000121-69-7</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENE</td>
<td>000071-43-2</td>
<td>42.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENE, 1,4-DICHLORO-</td>
<td>000106-46-7</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENE, 2,4-DIISOCYANATO-1-METHYL-</td>
<td>000584-84-9</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENE, TRICHLOROMETHYL</td>
<td>000098-07-7</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENE, 1,2-DIMETHYL</td>
<td>000995-47-6</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZIDINE</td>
<td>000092-87-5</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZYL CHLORIDE</td>
<td>000100-44-7</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERYLLIUM</td>
<td>007440-41-7</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETA-PROPIOLACTONE BIS(2-ETHYLHEXYL) PHTHALATE</td>
<td>000057-57-8</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>000075-25-2</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUTANOL</td>
<td>000071-36-3</td>
<td>247.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADMIUM</td>
<td>007440-43-9</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPTAN</td>
<td>000133-06-2</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBAMIC ACID, ETHYL ESTER</td>
<td>000051-79-6</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBAMIC CHLORIDE, DIMETHYL</td>
<td>000079-44-7</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON DISULFIDE</td>
<td>000075-15-0</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON MONOXIDE</td>
<td>000630-08-0</td>
<td>119.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>000056-23-5</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBONYL SULFIDE</td>
<td>00463-58-1</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 42 of 143
New York State Department of Environmental Conservation
Permit Review Report

Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

<table>
<thead>
<tr>
<th>Substance ID</th>
<th>Substance Name</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000133-90-4</td>
<td>CHLORAMBEN</td>
<td>0.01</td>
</tr>
<tr>
<td>016887-00-6</td>
<td>CHLORIDE ION</td>
<td>0.01</td>
</tr>
<tr>
<td>007782-50-5</td>
<td>CHLORINE</td>
<td>279.57</td>
</tr>
<tr>
<td>000108-90-7</td>
<td>CHLOROBENZENE</td>
<td>0.01</td>
</tr>
<tr>
<td>000067-66-3</td>
<td>CHLOROFORM</td>
<td>38</td>
</tr>
<tr>
<td>007738-94-5</td>
<td>CHROMIC ACID</td>
<td>0.01</td>
</tr>
<tr>
<td>007440-47-3</td>
<td>CHROMIUM</td>
<td>0.91</td>
</tr>
<tr>
<td>007440-48-4</td>
<td>COBALT</td>
<td>0.08</td>
</tr>
<tr>
<td>007440-50-8</td>
<td>COPPER</td>
<td>280.63</td>
</tr>
<tr>
<td>000091-44-1</td>
<td>COUMARIN, 7-</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(DIETHYLMAMINO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-METHYL-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRESYLIC ACID</td>
<td>0.01</td>
</tr>
<tr>
<td>001319-77-3</td>
<td>CYANAMIDE,</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>CALCIUM SALT</td>
<td>(1:1)</td>
</tr>
<tr>
<td>000057-12-5</td>
<td>CYANIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000541-02-6</td>
<td>DECA METHYL CY</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>CLOPENTASILOX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANE</td>
<td></td>
</tr>
<tr>
<td>000334-88-3</td>
<td>DIAZOMETHANE</td>
<td>0.01</td>
</tr>
<tr>
<td>000132-64-9</td>
<td>DIBENZOFURAN</td>
<td>0.01</td>
</tr>
<tr>
<td>000111-92-2</td>
<td>DIBUTYL AMINE</td>
<td>2976.3</td>
</tr>
<tr>
<td>000075-09-2</td>
<td>DICHLOROMETHANE</td>
<td>0.01</td>
</tr>
<tr>
<td>000131-11-3</td>
<td>DIMETHYL</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>PHTHALATE</td>
<td></td>
</tr>
<tr>
<td>000115-10-6</td>
<td>DIMETHYL</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>ETHER</td>
<td>5536.8</td>
</tr>
<tr>
<td>000067-64-1</td>
<td>DIMETHYL</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>KETONE</td>
<td></td>
</tr>
<tr>
<td>069430-24-6</td>
<td>DIMETHYL CYCL</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>OSELOXANES</td>
<td></td>
</tr>
<tr>
<td>000075-78-5</td>
<td>DIMETHYL DICHL</td>
<td>52.56</td>
</tr>
<tr>
<td></td>
<td>OROSILANE</td>
<td></td>
</tr>
<tr>
<td>022431-89-6</td>
<td>DIOXANE, 1,2-</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>3,3,6,6-TETRAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL</td>
<td>36.98</td>
</tr>
<tr>
<td>034590-94-8</td>
<td>DIPROPYLENE</td>
<td>954.14</td>
</tr>
<tr>
<td></td>
<td>GLYCOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL ETHER</td>
<td>510</td>
</tr>
<tr>
<td>064742-46-7</td>
<td>DISTILLATES</td>
<td>954.14</td>
</tr>
<tr>
<td></td>
<td>(PETROLEUM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDROTREATED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIDDLE</td>
<td></td>
</tr>
<tr>
<td>064742-47-8</td>
<td>DISTILLATES</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>(PETROLEUM),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDROTREATED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIGHT</td>
<td></td>
</tr>
<tr>
<td>000071-55-6</td>
<td>ETHANE, 1,1,1-</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>TRICHLORO</td>
<td></td>
</tr>
<tr>
<td>000079-00-5</td>
<td>ETHANE, 1,1,2-</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>TRICHLORO</td>
<td></td>
</tr>
<tr>
<td>000075-34-3</td>
<td>ETHANE, 1,1-D</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>DICHLORO-</td>
<td></td>
</tr>
<tr>
<td>000111-44-4</td>
<td>ETHANE, 1,1'-</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>OXYBIS 2-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLORO</td>
<td></td>
</tr>
<tr>
<td>000106-93-4</td>
<td>ETHANE, 1,2-</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>DIBROMO</td>
<td></td>
</tr>
<tr>
<td>000075-00-3</td>
<td>ETHANE</td>
<td>0.01</td>
</tr>
<tr>
<td>Substance ID</td>
<td>Substance Name</td>
<td>Quantity</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>000067-72-1</td>
<td>CHLORO ETHANE, HEXACHLORO ETHANE</td>
<td>0.01</td>
</tr>
<tr>
<td>000111-42-2</td>
<td>ETHANOL, 2,2'-IMINOBIS-ETHANOL</td>
<td>0.01</td>
</tr>
<tr>
<td>000110-80-5</td>
<td>ETHANOL, 1-DICHLORO ETHANE</td>
<td>0.01</td>
</tr>
<tr>
<td>00075-35-4</td>
<td>ETHENE, 1,1-DICHLORO ETHENE</td>
<td>0.01</td>
</tr>
<tr>
<td>000510-15-6</td>
<td>ETHYL, 1,2-DICHLORO ETHYLENE</td>
<td>0.01</td>
</tr>
<tr>
<td>000141-78-6</td>
<td>ETHYL ACETATE</td>
<td>4755.39</td>
</tr>
<tr>
<td>000064-17-5</td>
<td>ETHYL ALCOHOL (ETHANOL)</td>
<td>17628.69</td>
</tr>
<tr>
<td>000106-88-7</td>
<td>ETHYL OXIRANE</td>
<td>0.01</td>
</tr>
<tr>
<td>000100-41-4</td>
<td>ETHYL BENZENE</td>
<td>9660.3</td>
</tr>
<tr>
<td>000079-06-1</td>
<td>ETHYLENE CARBOXAMIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000075-21-8</td>
<td>ETHYLENE OXIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000096-45-7</td>
<td>ETHYLENE THIOUREA</td>
<td>0.01</td>
</tr>
<tr>
<td>000151-56-4</td>
<td>ETHYLENEIMINE</td>
<td>0.01</td>
</tr>
<tr>
<td>002374-14-3</td>
<td>FLUOROSILICON TRIMER</td>
<td>3164.72</td>
</tr>
<tr>
<td>000050-00-0</td>
<td>FORMALDEHYDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000068-12-2</td>
<td>FORMAMIDE, N,N-DIMETHYL MEDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000076-44-8</td>
<td>HEPTACHLOR</td>
<td>0.01</td>
</tr>
<tr>
<td>000118-74-1</td>
<td>HEXACHLOROBENZALIC ETHANE</td>
<td>0.01</td>
</tr>
<tr>
<td>000087-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>0.01</td>
</tr>
<tr>
<td>000077-47-4</td>
<td>HEXACHLOROCYCLOPENTADIENE</td>
<td>0.01</td>
</tr>
<tr>
<td>000541-05-9</td>
<td>HEXAMETHYLCYCLOTRISILICHOME</td>
<td>12308.04</td>
</tr>
<tr>
<td>000999-97-3</td>
<td>HEXAMETHYLDISILAZANE</td>
<td>53.56</td>
</tr>
<tr>
<td>000107-46-0</td>
<td>HEXAMETHYLDISILICHOME</td>
<td>16919.66</td>
</tr>
<tr>
<td>000110-54-3</td>
<td>HEXANE</td>
<td>1131.5</td>
</tr>
<tr>
<td>000822-06-0</td>
<td>HEXANE, 1,6-DIISOCYANATOHYDRAZINE</td>
<td>0.01</td>
</tr>
<tr>
<td>000302-01-2</td>
<td>HYDROCARBON S, C<10-LINEAR HYDRAZINE</td>
<td>0.01</td>
</tr>
<tr>
<td>068920-07-0</td>
<td>HYDROCARBON S, C3-6 HYDROCARBON S</td>
<td>4943.12</td>
</tr>
<tr>
<td>001333-74-0</td>
<td>HYDROGEN</td>
<td>5.48</td>
</tr>
<tr>
<td>007647-01-0</td>
<td>HYDROGEN CHLORIDE</td>
<td>6985.56</td>
</tr>
<tr>
<td>007664-39-3</td>
<td>HYDROGEN FLUORIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000122-66-7</td>
<td>HYDRAZINE, 1,2-DIPHENYLHYDRAZINE</td>
<td>0.01</td>
</tr>
<tr>
<td>000067-63-0</td>
<td>ISOPROPYL ALCOHOL</td>
<td>58685.89</td>
</tr>
<tr>
<td>007439-92-1</td>
<td>LEAD</td>
<td>0.97</td>
</tr>
<tr>
<td>001309-60-0</td>
<td>LEAD DIOXIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>004485-12-5</td>
<td>LITHIUM</td>
<td>42.64</td>
</tr>
<tr>
<td>Substance ID</td>
<td>Substance Name</td>
<td>Concentration</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>007439-96-5</td>
<td>STEARATE MANGANESE</td>
<td>1.28</td>
</tr>
<tr>
<td>007439-97-6</td>
<td>STEARATE MERCURY</td>
<td>2.9</td>
</tr>
<tr>
<td>000062-75-9</td>
<td>METHANAMINE, N-METHYL-N-NITROSO</td>
<td>0.01</td>
</tr>
<tr>
<td>000542-88-1</td>
<td>METHANE, OXYBIS (CHLORO)</td>
<td>0.01</td>
</tr>
<tr>
<td>000024-41-4</td>
<td>METHANOL, SODIUM SALT</td>
<td>17.73</td>
</tr>
<tr>
<td>000072-43-5</td>
<td>METHOXYCHLOR</td>
<td>0.01</td>
</tr>
<tr>
<td>000067-56-1</td>
<td>METHYL ALCOHOL</td>
<td>47824.7</td>
</tr>
<tr>
<td>000074-83-9</td>
<td>METHYL BROMIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000074-87-3</td>
<td>METHYL CHLORIDE</td>
<td>5372.79</td>
</tr>
<tr>
<td>000107-30-2</td>
<td>METHYL CHLOROMETHYL ETHER</td>
<td>0.01</td>
</tr>
<tr>
<td>000078-93-3</td>
<td>METHYL ETHYL KETONE</td>
<td>50.27</td>
</tr>
<tr>
<td>000060-34-4</td>
<td>METHYL HYDRAZINE</td>
<td>0.01</td>
</tr>
<tr>
<td>000074-88-4</td>
<td>METHYL IODIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000062-88-3</td>
<td>METHYL ISOCYANATE</td>
<td>0.01</td>
</tr>
<tr>
<td>001634-04-4</td>
<td>METHYL TERMINYL ETHER</td>
<td>0.01</td>
</tr>
<tr>
<td>000101-68-8</td>
<td>METHYLENE BISPHENYL ISOXYANATE</td>
<td>0.01</td>
</tr>
<tr>
<td>000057-55-6</td>
<td>METHYLGLYCOL</td>
<td>3.22</td>
</tr>
<tr>
<td>000075-79-6</td>
<td>METHYLTRICHLOSILANE</td>
<td>134.98</td>
</tr>
<tr>
<td>001185-55-3</td>
<td>METHYLTRIMETHYLSILANE</td>
<td>17447.95</td>
</tr>
<tr>
<td>000121-44-8</td>
<td>N,N-DIETHYL ETHANAMINE</td>
<td>0.01</td>
</tr>
<tr>
<td>000091-20-3</td>
<td>NAPHTHALENE</td>
<td>0.01</td>
</tr>
<tr>
<td>008030-30-6</td>
<td>NAPTHA</td>
<td>32447.04</td>
</tr>
<tr>
<td>007440-02-0</td>
<td>NICKEL METAL AND INSOLUBLE COMPOUNDS</td>
<td>0.9</td>
</tr>
<tr>
<td>000098-95-3</td>
<td>NITROBENZENE</td>
<td>0.01</td>
</tr>
<tr>
<td>010102-44-0</td>
<td>NITROGEN DIOXIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>000059-89-2</td>
<td>NITROSOMORPHOLINE</td>
<td>0.01</td>
</tr>
<tr>
<td>000684-93-5</td>
<td>NITROSO-N-METHYLUREA</td>
<td>0.01</td>
</tr>
<tr>
<td>000556-67-2</td>
<td>OCTAMETHYLCLOSILOXANE</td>
<td>184574</td>
</tr>
<tr>
<td>000111-66-0</td>
<td>OCTENE, 1-OXYCHLOR</td>
<td>2089.42</td>
</tr>
<tr>
<td>000119-93-7</td>
<td>OXYCHLOR</td>
<td>0.01</td>
</tr>
<tr>
<td>0NY210-00-0</td>
<td>NITROGEN</td>
<td>567053.46</td>
</tr>
<tr>
<td>000106-89-8</td>
<td>OXIRANE</td>
<td>0.01</td>
</tr>
<tr>
<td>Substance Description</td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>(CHLOROMETHYL) P-AMINODIPHENYL L</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PARA-NITROPHENOL PARTICULATES</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PENTACHLORONITROBENZENE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PENTANE, 2,2,4-TRIMETHYL-PENTANE, 2-METHYL</td>
<td>197.6</td>
<td></td>
</tr>
<tr>
<td>PERCHLOROETHYLENE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHENOL</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHENOL, 2-METHYL-4,6-DINITRO</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHENOL, 3-METHYL</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHENOL, 4-METHYL</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHENOL, PENTACHLOROPHENOL,4,4',4"-(2,4,6-TRIMETHYL-1,3,5-BENZENETRIYL) TRIS(MET)</td>
<td>3490.5</td>
<td></td>
</tr>
<tr>
<td>PHOSPHINE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORIC ACID, 2,2-DICHLOOROETHYL NYL DIMETHYL ESTER</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS (YELLOW)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PM 2.5</td>
<td>31032.14</td>
<td></td>
</tr>
<tr>
<td>PM-10</td>
<td>31032.14</td>
<td></td>
</tr>
<tr>
<td>PHENYLENEDIAMINE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PROPANE SULTONE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PROPANE, 1,2-DIBROMO-3-CHLORO</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PROPANE, 1,2-DICHLORO</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PROPANE, 1,2-EPOXY-PROPAE, 2-NITRO</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PROPANENITRILE, E, 3-(TRIETHOXYLSILYL)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>PROPENENITRILE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PROPIONALDEHYDE</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Substance</td>
<td>Quantity (lbs)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>000091-22-5</td>
<td>QUINOLINE</td>
<td>0.01</td>
</tr>
<tr>
<td>000106-51-4</td>
<td>QUINONE</td>
<td>0.01</td>
</tr>
<tr>
<td>007782-49-2</td>
<td>SELENIUM</td>
<td>0.1</td>
</tr>
<tr>
<td>007691-02-3</td>
<td>SILANAMINE, 1-ETHENYL-N-(ETHENYLMIDET HYLSILYL)-1,1-DIMETHYL-</td>
<td>1470.7</td>
</tr>
<tr>
<td>007803-62-5</td>
<td>SILANE, CHLOROMETHYL DERIVS</td>
<td>4659.2</td>
</tr>
<tr>
<td>068479-14-1</td>
<td>SILANE, CHLOROETHENYLDIMETHYL</td>
<td>57.3</td>
</tr>
<tr>
<td>001719-58-0</td>
<td>SILANE, CHLOROETHYLENYLMETHYL</td>
<td>9211.57</td>
</tr>
<tr>
<td>000124-70-9</td>
<td>SILANE, DICHLOOROTHEXYLMETHYL</td>
<td>0.01</td>
</tr>
<tr>
<td>000075-54-7</td>
<td>SILANE, DICHLOOROMETHYL</td>
<td>9119.88</td>
</tr>
<tr>
<td>000675-62-7</td>
<td>SILANE, DICHLOOROMETHYL(3,3,3-TRIFLUOROPROPYL)-</td>
<td>23754.18</td>
</tr>
<tr>
<td>001112-39-6</td>
<td>SILANE, DIMETHOXYDIMETHYL</td>
<td>0.01</td>
</tr>
<tr>
<td>006843-66-9</td>
<td>SILANE, DIMETHOXYDIPHENYL</td>
<td>3657.06</td>
</tr>
<tr>
<td>000075-94-5</td>
<td>SILANE, TRICHLOROETHYLENYL</td>
<td>0.01</td>
</tr>
<tr>
<td>000998-30-1</td>
<td>SILANE, TRIETHOXY</td>
<td>82.4</td>
</tr>
<tr>
<td>000993-07-7</td>
<td>SILANE, TRIMETHYLSILANE.CHLOROETHYLMETHYL</td>
<td>25</td>
</tr>
<tr>
<td>001066-35-9</td>
<td>SILANE, TRIMETHYLSILANE.CHLOROETHYLMETHYL</td>
<td>0.01</td>
</tr>
<tr>
<td>004253-34-3</td>
<td>SILANETRIOL, METHYL-,TRIACETATE</td>
<td>161.35</td>
</tr>
<tr>
<td>000078-10-4</td>
<td>SILICIC ACID, TETRAETHYL ESTER</td>
<td>26.25</td>
</tr>
<tr>
<td>000682-01-9</td>
<td>SILICIC ACID, TETRAPROPYL ESTER</td>
<td>4.69</td>
</tr>
<tr>
<td>007440-21-3</td>
<td>SILICON, SILOXANES</td>
<td>1329.81</td>
</tr>
<tr>
<td>070131-67-8</td>
<td>SILOXANES AND SILICONES,DI-ME</td>
<td>0.01</td>
</tr>
<tr>
<td>063148-62-9</td>
<td>SILOXANES AND SILICONES,DI-ME</td>
<td>14795.38</td>
</tr>
<tr>
<td>008052-41-3</td>
<td>STODDARD SOLVENT</td>
<td>5001.23</td>
</tr>
<tr>
<td>009100-42-5</td>
<td>STYRENE</td>
<td>0.01</td>
</tr>
<tr>
<td>000096-09-3</td>
<td>STYRENE OXIDE</td>
<td>0.01</td>
</tr>
<tr>
<td>007446-09-5</td>
<td>SULFUR DIOXIDE</td>
<td>167405.5</td>
</tr>
<tr>
<td>000064-67-5</td>
<td>SULFURIC ACID, DIETHYL ESTER</td>
<td>0.01</td>
</tr>
<tr>
<td>000077-78-1</td>
<td>SULFURIC ACID, DIMETHYL ESTER</td>
<td>0.01</td>
</tr>
</tbody>
</table>
NOTIFICATION OF GENERAL PERMITTEE OBLIGATIONS

Item A: Public Access to Recordkeeping for Title V Facilities - 6 NYCRR 201-1.10(b)
The Department will make available to the public any permit application, compliance plan, permit, and monitoring and compliance certification report pursuant to Section 503(e) of the Act, except for information entitled to confidential treatment pursuant to 6 NYCRR Part 616 - Public Access to records and Section 114(c) of the Act.

Item B: Timely Application for the Renewal of Title V Permits - 6 NYCRR Part 201-6.2(a)(4)
Owners and/or operators of facilities having an issued Title V permit shall submit a complete application at least 180 days, but not more than eighteen months, prior to the date of permit expiration for permit renewal purposes.

Item C: Certification by a Responsible Official - 6 NYCRR Part 201-6.2(d)(12)
Any application, form, report or compliance certification required to be submitted pursuant to the federally enforceable portions of this permit shall contain a certification of truth, accuracy and completeness by a responsible official. This certification shall state that based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Item D: Requirement to Comply With All Conditions - 6 NYCRR Part 201-6.4(a)(2)
The permittee must comply with all conditions of the Title V facility permit. Any permit non-compliance constitutes a violation of the Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit.
item E: Permit Revocation, Modification, Reopening, Reissuance or Termination, and Associated Information Submission Requirements - 6 NYCRR Part 201-6.4(a)(3)

This permit may be modified, revoked, reopened and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition.

Item F: Cessation or Reduction of Permitted Activity Not a Defense - 6 NYCRR 201-6.4(a)(5)

It shall not be a defense for a permittee in an enforcement action to claim that a cessation or reduction in the permitted activity would have been necessary in order to maintain compliance with the conditions of this permit.

Item G: Property Rights - 6 NYCRR 201-6.4(a)(6)

This permit does not convey any property rights of any sort or any exclusive privilege.

Item H: Severability - 6 NYCRR Part 201-6.4(a)(9)

If any provisions, parts or conditions of this permit are found to be invalid or are the subject of a challenge, the remainder of this permit shall continue to be valid.

Item I: Permit Shield - 6 NYCRR Part 201-6.4(g)

All permittees granted a Title V facility permit shall be covered under the protection of a permit shield, except as provided under 6 NYCRR Subpart 201-6. Compliance with the conditions of the permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that such applicable requirements are included and are specifically identified in the permit, or the Department, in acting on the permit application or revision, determines in writing that other requirements specifically identified are not applicable to the major stationary source, and the permit includes the determination or a concise summary thereof. Nothing herein shall preclude the Department from revising or revoking the permit pursuant to 6 NYCRR Part 621 or from exercising its summary abatement authority. Nothing in this permit shall alter or affect the following:

i. The ability of the Department to seek to bring suit on behalf of the State of New York, or the Administrator to seek to bring suit on behalf of the United States, to immediately restrain any person causing or contributing to pollution presenting an imminent and substantial endangerment to public health, welfare or the environment to stop the emission of air pollutants causing or contributing to such pollution;

ii. The liability of a permittee of the Title V facility for any violation of applicable requirements prior to or at the time of permit issuance;

iii. The applicable requirements of Title IV of the Act;

iv. The ability of the Department or the Administrator to obtain information from the permittee concerning the ability to enter, inspect and monitor the facility.
Item J: Reopening for Cause - 6 NYCRR Part 201-6.4(i)
This Title V permit shall be reopened and revised under any of the following circumstances:

i. If additional applicable requirements under the Act become applicable where this permit's remaining term is three or more years, a reopening shall be completed not later than 18 months after promulgation of the applicable requirement. No such reopening is required if the effective date of the requirement is later than the date on which this permit is due to expire, unless the original permit or any of its terms and conditions has been extended by the Department pursuant to the provisions of Part 201-6.7 and Part 621.

ii. The Department or the Administrator determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of the permit.

iii. The Department or the Administrator determines that the Title V permit must be revised or reopened to assure compliance with applicable requirements.

iv. If the permitted facility is an "affected source" subject to the requirements of Title IV of the Act, and additional requirements (including excess emissions requirements) become applicable. Upon approval by the Administrator, excess emissions offset plans shall be deemed to be incorporated into the permit.

Proceedings to reopen and issue Title V facility permits shall follow the same procedures as apply to initial permit issuance but shall affect only those parts of the permit for which cause to reopen exists.

Reopenings shall not be initiated before a notice of such intent is provided to the facility by the Department at least thirty days in advance of the date that the permit is to be reopened, except that the Department may provide a shorter time period in the case of an emergency.

Item K: Permit Exclusion - ECL 19-0305
The issuance of this permit by the Department and the receipt thereof by the Applicant does not and shall not be construed as barring, diminishing, adjudicating or in any way affecting any legal, administrative or equitable rights or claims, actions, suits, causes of action or demands whatsoever that the Department may have against the Applicant for violations based on facts and circumstances alleged to have occurred or existed prior to the effective date of this permit, including, but not limited to, any enforcement action authorized pursuant to the provisions of applicable federal law, the Environmental Conservation Law of the State of New York (ECL) and Chapter III of the Official Compilation of the Codes, Rules and Regulations of the State of New York (NYCRR). The issuance of this permit also shall not in any way affect pending or future enforcement actions under the Clean Air Act brought by the United States or any person.

Item L: Federally Enforceable Requirements - 40 CFR 70.6(b)
All terms and conditions in this permit required by the Act or any applicable requirement, including any provisions designed to limit a facility's potential to emit, are enforceable by the Administrator and citizens under the Act. The Department has, in this permit, specifically designated any terms and conditions that are not required under the Act or under any of its applicable requirements as being enforceable under only state regulations.
NOTIFICATION OF GENERAL PERMITTEE OBLIGATIONS

Item A: Emergency Defense - 6 NYCRR 201-1.5

An emergency, as defined by subpart 201-2, constitutes an affirmative defense to penalties sought in an enforcement action brought by the Department for noncompliance with emissions limitations or permit conditions for all facilities in New York State.

(a) The affirmative defense of emergency shall be demonstrated through properly signed, contemporaneous operating logs, or other relevant evidence that:

(1) An emergency occurred and that the facility owner or operator can identify the cause(s) of the emergency;
(2) The equipment at the permitted facility causing the emergency was at the time being properly operated and maintained;
(3) During the period of the emergency the facility owner or operator took all reasonable steps to minimize levels of emissions that exceeded the emission standards, or other requirements in the permit; and
(4) The facility owner or operator notified the Department within two working days after the event occurred. This notice must contain a description of the emergency, any steps taken to mitigate emissions, and corrective actions taken.

(b) In any enforcement proceeding, the facility owner or operator seeking to establish the occurrence of an emergency has the burden of proof.

(c) This provision is in addition to any emergency or upset provision contained in any applicable requirement. item_02

Item B: General Provisions for State Enforceable Permit Terms and Condition - 6 NYCRR Part 201-5

Any person who owns and/or operates stationary sources shall operate and maintain all emission units and any required emission control devices in compliance with all applicable Parts of this Chapter and existing laws, and shall operate the facility in accordance with all criteria, emission limits, terms, conditions, and standards in this permit. Failure of such person to properly operate and maintain the effectiveness of such emission units and emission control devices may be sufficient reason for the Department to revoke or deny a permit.

The owner or operator of the permitted facility must maintain all required records on-site for a period of five years and make them available to representatives of the Department upon request. Department representatives must be granted access to any facility regulated by this Subpart, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations or law.
Regulatory Analysis

<table>
<thead>
<tr>
<th>Location</th>
<th>Regulation</th>
<th>Condition</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>ECL 19-0301</td>
<td>472</td>
<td>Powers and Duties of the Department with respect to air pollution control</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.12</td>
<td>79</td>
<td>General provisions - Circumvention</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.13(a)</td>
<td>80</td>
<td>General provisions - Monitoring requirements</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.13(d)</td>
<td>81</td>
<td>General provisions - Monitoring requirements</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.4</td>
<td>74</td>
<td>General provisions - Address</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.7(b)</td>
<td>75</td>
<td>Notification and Recordkeeping</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.7(c)</td>
<td>76</td>
<td>Notification and Recordkeeping</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.7(d)</td>
<td>77</td>
<td>Notification and Recordkeeping</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-A.7(f)</td>
<td>78</td>
<td>Notification and Recordkeeping</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Db.44b(h)</td>
<td>82</td>
<td>Standards for Nitrogen Oxides Provisions.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Db.48b(c)</td>
<td>83</td>
<td>Emission Monitoring for Particulate Matter and Nitrogen Oxides.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Db.48b(f)</td>
<td>84</td>
<td>Emission Monitoring for Particulate Matter and Nitrogen Oxides.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Db.49b(g)</td>
<td>85</td>
<td>Reporting and Recordkeeping Requirements.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Kb.112b(a)(3)</td>
<td>86</td>
<td>NSPS for volatile organic liquid storage vessels - standard for volatile organic compounds (VOC)</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Kb.113b(c)</td>
<td>87</td>
<td>NSPS for volatile organic liquid storage vessels - testing and procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Kb.115b(c)</td>
<td>88</td>
<td>NSPS for volatile organic liquid storage vessels - reporting and recordkeeping requirements</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 60-Kb.116b(b)</td>
<td>89</td>
<td>NSPS for volatile organic liquid storage vessels - monitoring of</td>
</tr>
</tbody>
</table>
FACILITY 40CFR 60-NNN.662(a) 90
operations
Standards of performance for VOC emissions from SOCMI distillation operations - standards

FACILITY 40CFR 60-NNN.663(a) 91
Standards of performance for VOC emissions from SOCMI distillation operations - standards

FACILITY 40CFR 60-NNN.665 92
Standards of performance for VOC emissions from SOCMI distillation operations - reporting and recordkeeping requirements

FACILITY 40CFR 60-RRR.702(a) 93
Standards of performance for VOC emissions from SOCMI reactor processes - standards

FACILITY 40CFR 61-A 94
General Provisions - applicability of part 61

FACILITY 40CFR 61-M.145 95
Asbestos standards: standard for demolition and renovation

FACILITY 40CFR 63-A.6(e)(1) 96
General Provisions - Operations and Maintenance Requirements During Startup, Shutdown, and Malfunction Operation and Maintenance (MACT Gen. Prov.)

FACILITY 40CFR 63-A.6(e)(1)(i) 97
Startup, Shutdown and Malfunction Plan

FACILITY 40CFR 63-A.6(e)(3) 98
Compliance with Nonopacity Standards (MACT Gen. Prov.)

FACILITY 40CFR 63-A.6(f)(1) 99
Methods for Determining Compliance (MACT Gen. Prov.)

FACILITY 40CFR 63-A.6(f)(2)(i) 100
Methods for determining compliance (MACT Gen. Prov.)

FACILITY 40CFR 63-A.6(f)(2)(ii) 101
Offsite Waste and Recovery Operations NESHAP - Facility-wide exemption

FACILITY 40CFR 63-DD.680(d) 198
ICI Boiler Major Source NESHAP - Emission Limits and Management Practices

FACILITY 40CFR 63-DDDD.7500(a) 257
ICI Boiler Major

FACILITY 40CFR 63- 258, 259, 260
ICI Boiler Major
<table>
<thead>
<tr>
<th>FACILITY</th>
<th>Source NESHAP</th>
<th>Continuous Compliance</th>
<th>ICI Boiler Major</th>
<th>Source NESHAP</th>
<th>Notification of Compliance Status</th>
<th>ICI Boiler Major</th>
<th>Source NESHAP</th>
<th>Reporting Requirements</th>
<th>Hazardous Waste Combustion NESHAP</th>
<th>Compliance Date for existing haz. waste incinerators</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>40CFR 63-5150 (a)</td>
<td>261</td>
<td>Source NESHAP</td>
<td>Continuous Compliance</td>
<td>ICI Boiler Major</td>
<td>Source NESHAP</td>
<td>Notification of Compliance Status</td>
<td>ICI Boiler Major</td>
<td>Source NESHAP</td>
<td>Reporting Requirements</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-5150 (b)</td>
<td>262</td>
<td>Source NESHAP</td>
<td>Continuous Compliance</td>
<td>ICI Boiler Major</td>
<td>Source NESHAP</td>
<td>Notification of Compliance Status</td>
<td>ICI Boiler Major</td>
<td>Source NESHAP</td>
<td>Reporting Requirements</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-5150 (c)</td>
<td>263</td>
<td>Source NESHAP</td>
<td>Continuous Compliance</td>
<td>ICI Boiler Major</td>
<td>Source NESHAP</td>
<td>Notification of Compliance Status</td>
<td>ICI Boiler Major</td>
<td>Source NESHAP</td>
<td>Reporting Requirements</td>
</tr>
</tbody>
</table>

Page 54 of 143
FACILITY 40CFR 63- EEE.1209(a) (7) 278 Hazardous Waste Combustor NESHAP - Operating parameter limits for hydrocarbons
FACILITY 40CFR 63- EEE.1209(c) (1) 279 Hazardous Waste Combustor NESHAP - General feedstream analysis requirements
FACILITY 40CFR 63- EEE.1209(c) (2) 280 Hazardous Waste Combustor NESHAP - Feedstream analysis plan
FACILITY 40CFR 63- EEE.1209(c) (4) 281 Hazardous Waste Combustor NESHAP - Compliance with feedrate limits
FACILITY 40CFR 63- EEE.1209(j) (1) 282, 283, 284 Hazardous Waste Combustor NESHAP - DRE monitoring
FACILITY 40CFR 63- EEE.1209(j) (3) 285, 286, 287 Hazardous Waste Combustor NESHAP - DRE monitoring requirements
FACILITY 40CFR 63- EEE.1209(j) (4) 288, 289, 290, 291 Hazardous Waste Combustor NESHAP - DRE standards - operation of waste firing system
FACILITY 40CFR 63- EEE.1209(1) (1) 292, 293 Hazardous Waste Combustor NESHAP - Mercury monitoring - feedrate of total mercury limit

New York State Department of Environmental Conservation
Permit Review Report
Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

FACILITY 40CFR 63-EEE.1209(n)(2) 335
-
 semivolatile and
 low volatility metals
 - maximum feedrate of
 metal
 Hazardous Waste
 Combustor NESHAP -
 monitoring provisions
 for semivolatile and
 low-volatile metals

FACILITY 40CFR 63-EEE.1209(n)(4) 336, 337, 338
Hazardous Waste
Combustor NESHAP -
monitoring provisions
for semivolatile and
low volatile metal
standards

FACILITY 40CFR 63-EEE.1209(o)(3) 339, 340, 341, 342, 343, 344
Hazardous Waste
Combustor NESHAP -
Hydrochloric acid and
chlorine gas
monitoring provisions

FACILITY 40CFR 63-EEE.1209(o)(3) 345, 346, 347, 348, 349, 350, 351, 352, 353
Hazardous Waste
Combustor NESHAP -
Hydrochloric acid and
chlorine gas
monitoring provisions

FACILITY 40CFR 63-EEE.1209(o)(3) 354, 355, 356, 357, 358, 359, 360, 361
Hazardous Waste
Combustor NESHAP -
Hydrochloric acid and
chlorine gas
monitoring provisions

FACILITY 40CFR 63-EEE.1209(o)(3) 362, 363, 364, 365, 366
Hazardous Waste
Combustor NESHAP -
Hydrochloric acid and
chlorine gas
monitoring provisions

FACILITY 40CFR 63-EEE.1209(p) 367, 368, 369
Hazardous Waste
Combustor NESHAP -
Monitoring provisions
- Maximum combustion
chamber pressure

FACILITY 40CFR 63-EEE.1210(a) 370
Hazardous Waste
Combustion NESHAP -
Notification
Requirements

FACILITY 40CFR 63-EEE.1210(b) 371
Hazardous Waste
Combustion NESHAP -
Notification
Requirements -
Notification of
Intent to Comply

FACILITY 40CFR 63-EEE.1210(d) 372
Hazardous Waste
Combustion NESHAP -
Notification
Requirements -
Notification of
Compliance

FACILITY 40CFR 63-EEE.1211(a) 373, 374, 375, 376, 377
Hazardous Waste
Combustion NESHAP -
Recordkeeping and
Reporting
Requirements

FACILITY 40CFR 63-EEE.1211(b) 378, 379, 380
Hazardous Waste
Combustor NESHAP -
Recordkeeping
FACILITY 40CFR 63-EEE.1211(c) 381

FACILITY 40CFR 63-EEE.1219(a) 382, 383, 384, 385, 386, 387, 388

FACILITY 40CFR 63-EEE.1219(c) (1) 389

FACILITY 40CFR 63-EEE.1219(c) (3) 390

FACILITY 40CFR 63-EEE.1219(e) 391

FACILITY 40CFR 63-F.102(a) (2) 102, 103

FACILITY 40CFR 63-F.104 104, 105

C-27018/-/406 40CFR 63-F.104 468, 469

C-27018/-/406/HXCNW 40CFR 63-F.104 470, 471

FACILITY 40CFR 63-F.105 106, 107

FACILITY 40CFR 63-FFFF.2450(a) 392

FACILITY 40CFR 63-FFFF.2450(b) 393

FACILITY 40CFR 63-FFFF.2450(e) 394

FACILITY 40CFR 63-FFFF.2450(h) 395

requirements

Hazardous Waste
Combustion NESHAP – Recordkeeping and Reporting Requirements – Documentation of Compliance

Hazardous Waste
Combustion NESHAP – Replacement Standards – Emission limits for existing sources

Hazardous Waste
Combustion NESHAP – Replacement Standards – 99.99% DRE standard

Hazardous Waste
Combustion NESHAP – Replacement Standards – POHC's (principal organic hazardous constituents)

Subpart F – HON NESHAP – general standards

Subpart F – HON NESHAP – heat exchange system requirements

Subpart F – HON NESHAP – heat exchange system requirements

Subpart F – HON NESHAP – maintenance wastewater requirements

Miscellaneous Organic Chemical Manufacturing NESHAP (MON) – General Requirements

Miscellaneous Organic Chemical Manufacturing NESHAP (MON) – Determination of halogenated vent streams

Miscellaneous Organic Chemical Mfg NESHAP – General requirements for control devices.
FACILITY	40CFR 63-FFFF.2450(i)	396	Manufacturing NESHAP (MON) - Design Evaluations Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Outlet Concentration Correction for Combustion Devices
FACILITY	40CFR 63-FFFF.2450(j)	397	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - CEMS
FACILITY	40CFR 63-FFFF.2450(k)	398	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Continuous Parameter Monitoring
FACILITY	40CFR 63-FFFF.2450(l)	399	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Startup, Shutdown, and Malfunctions
FACILITY	40CFR 63-FFFF.2455(a)	400	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Continuous Process Vents - Emission limits
FACILITY	40CFR 63-FFFF.2455(b)	401	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Continuous Process Vents - Group 1 or TRE calculations
FACILITY	40CFR 63-FFFF.2460(a)	402	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Continuous Process Vents - Emission limits
FACILITY	40CFR 63-FFFF.2460(b)	403	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Batch Process Vents - Group status
FACILITY	40CFR 63-FFFF.2460(c)	404	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Batch Process Vents - Exceptions to Subpart SS
FACILITY	40CFR 63-FFFF.2460(c)(7)	405	Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Batch Process Vents - Intermittent
FACILITY 40CFR 63-FFFF.2465(a) 414, 415, 416, 417, 418, 419
FACILITY 40CFR 63-FFFF.2480 420
FACILITY 40CFR 63-FFFF.2485(c) 421
FACILITY 40CFR 63-FFFF.2520(c) 422, 423, 424
FACILITY 40CFR 63-FFFF.2525 425
FACILITY 40CFR 63-FFFF.2535(g) 426
FACILITY 40CFR 63-G.113 108
FACILITY 40CFR 63-G.113(a)(2) 109
FACILITY 40CFR 63-G.113(b) 110
FACILITY 40CFR 63-G.114 111
FACILITY 40CFR 63-G.114(a)(1)(i) 112, 113

flow to the control device
Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Process Vents Emitting Halogens or PM - emission limits
Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Equipment leak provisions
Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Wastewater Requirements - group 1 wastewater streams
Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Reporting Requirements - Precompliance report
Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Recordkeeping Requirements
Miscellaneous Organic Chemical Manufacturing NESHAP (MON) - Compliance With Other Regulations For Wastewater
Subpart G - HON NESHAP for Process Vents, Storage Vessels, etc - process vent provisions - reference control technology
Group 1 Process Vents - emission reductions
Subpart G - HON NESHAP for Process Vents, Storage Vessels, etc - process vent provisions - reference control technology
Subpart G - HON NESHAP for Process Vents, Storage Vessels, etc - process vent provisions - monitoring requirements
FACILITY 40CFR 63-G.114(a)(3) 114
vent provisions-
monitoring
requirements
Subpart G - HON
NESHAP for Process
Vents, Storage
Vessels, etc-process
vent provisions-
monitoring
requirements

FACILITY 40CFR 63-G.114(a)(4)(i) 115, 116
Subpart G - HON
NESHAP for Process
Vents, Storage
Vessels, etc-process
vent provisions-
monitoring
requirements

FACILITY 40CFR 63-G.114(a)(4)(ii) 117, 118, 119, 120, 121, 122, 123, 124
Subpart G - HON
NESHAP for Process
Vents, Storage
Vessels, etc-process
vent provisions-
monitoring
requirements

FACILITY 40CFR 63-G.119(b) 125
HON NESHAP - storage
vessel provisions-
reference control
technology

FACILITY 40CFR 63-G.119(e) 126
HON NESHAP - storage
vessel provisions-
reference control
technology

FACILITY 40CFR 63-G.123(a) 127
HON NESHAP - storage
vessel provisions -
recordkeeping

FACILITY 40CFR 63-G.132(a)(3) 128
HON - process
wastewater provisions
- general

FACILITY 40CFR 63-G.132(f) 129
HON - process
wastewater provisions
- general

FACILITY 40CFR 63-G.133(a)(1) 130, 131
HON - process
wastewater provisions
- wastewater tanks

FACILITY 40CFR 63-G.133(a)(2) 132
HON - process
wastewater provisions
- wastewater tanks

FACILITY 40CFR 63-G.133(f) 133
HON - process
wastewater provisions
- wastewater tanks

FACILITY 40CFR 63-G.135(b) 134, 135, 136
HON - process
wastewater provisions
- wastewater tanks

FACILITY 40CFR 63-G.135(c) 137
HON - process
wastewater provisions
- containers

FACILITY 40CFR 63-G.135(e) 138
HON - process
wastewater provisions
- containers

FACILITY 40CFR 63-G.135(f) 139
HON - process
wastewater provisions
- containers

FACILITY 40CFR 63-G.136 140
HON - process
wastewater provisions
New York State Department of Environmental Conservation
Permit Review Report
Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

- individual drain systems
- oil-water separators
HON - process wastewater provisions
Hazardous Organic NESHAP - Residuals from Group 1 Wastewater Streams
- control devices
HON - process wastewater provisions
- control devices
HON - process wastewater provisions
- inspection and monitoring of operations
HON - process wastewater provisions
- inspection and monitoring of operations
HON - process wastewater provisions
- inspection and monitoring of operations
HON - process wastewater provisions
- test methods, procedures to determine compliance
HON - process wastewater provisions
- reporting
HON - process wastewater provisions
- recordkeeping
Leak inspection provisions
General reporting and continuous records
General reporting and continuous records
General reporting and continuous records
Site Remediation

Page 61 of 143
GGGGG.7881(c) NESHAP - Sources
Subject Only To Limited Recordkeeping
Subpart H - HON NESHAP for Equipment Leaks

FACILITY 40CFR 63-H.160 159

FACILITY 40CFR 63-H.162(c) 160

C-27018/-/400/FUGTV 40CFR 63-H.162(c) 464, 465

FACILITY 40CFR 63-H.162(f) 161, 162

FACILITY 40CFR 63-H.163(a) 163

FACILITY 40CFR 63-H.163(b)(1) 164

FACILITY 40CFR 63-H.163(b)(2) 165

FACILITY 40CFR 63-H.163(b)(3) 166

FACILITY 40CFR 63-H.163(d)(1) 167

FACILITY 40CFR 63-H.164(l) 168

FACILITY 40CFR 63-H.165(d)(2) 169

FACILITY 40CFR 63-H.166 170

FACILITY 40CFR 63-H.167(a)(1) 171

FACILITY 40CFR 63-H.167(b) 172
FACILITY 40CFR 63-H.167(c) 173

FACILITY 40CFR 63-H.167(d) 174

FACILITY 40CFR 63-H.168(b) 175

FACILITY 40CFR 63-H.168(f)(1) 176

FACILITY 40CFR 63-H.168(h) 177

FACILITY 40CFR 63-H.168(i) 178

FACILITY 40CFR 63-H.171(a) 179

FACILITY 40CFR 63-H.171(b) 180

FACILITY 40CFR 63-H.171(c) 181

FACILITY 40CFR 63-H.171(d) 182

FACILITY 40CFR 63-H.171(e) 183

FACILITY 40CFR 63-H.174(a) 184
<table>
<thead>
<tr>
<th>Facility</th>
<th>40CFR 63-H.174(c)(1)(i)</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - standards: connectors in gas/vapor service and in light liquid service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.174(c)(2)</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - standards: connectors in gas/vapor service and in light liquid service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.174(f)</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - standards: connectors in gas/vapor service and in light liquid service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.174(g)</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - standards: connectors in gas/vapor service and in light liquid service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.174(h)(1)</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - standards: connectors in gas/vapor service and in light liquid service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.175</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - quality improvement program for valves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.181(a)</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - recordkeeping requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.181(b)</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - recordkeeping requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.181(c)</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - recordkeeping requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.181(d)</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - recordkeeping requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>40CFR 63-H.181(f)</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>NESHAP for Equipment Leaks - recordkeeping requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subpart H - HON</td>
<td></td>
</tr>
</tbody>
</table>
Leaks - recordkeeping requirements
- Subpart H - HON NESHAP for Equipment Leaks - recordkeeping requirements

Leaks - reporting requirements
- Subpart H - HON NESHAP for Equipment Leaks - reporting requirements

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>40CFR 63-H.181(h)</th>
<th>196</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.182(d)</td>
<td>197</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.181(h)</td>
<td>196</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.182(d)</td>
<td>197</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.181(h)</td>
<td>196</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.182(d)</td>
<td>197</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.181(h)</td>
<td>196</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.182(d)</td>
<td>197</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.181(h)</td>
<td>196</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.182(d)</td>
<td>197</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.181(h)</td>
<td>196</td>
</tr>
<tr>
<td>FACILITY</td>
<td>40CFR 63-H.182(d)</td>
<td>197</td>
</tr>
</tbody>
</table>

Hydrochloric Acid Production NESHAP - Emission Limits
- Subpart H - HON NESHAP for Equipment Leaks - recordkeeping requirements

Hydrochloric Acid Production NESHAP - Operating Limits
- Subpart H - HON NESHAP for Equipment Leaks - reporting requirements

Hydrochloric Acid Production NESHAP - General Requirements
- Startup/shutdown/malfunction plan

Hydrochloric Acid Production NESHAP - Monitoring system requirements
- Hydrochloric Acid Production NESHAP - General Requirements

Hydrochloric Acid Production NESHAP - Performance Tests - Percent reduction requirements
- Hydrochloric Acid Production NESHAP - General Requirements

Hydrochloric Acid Production NESHAP - Monitoring System Requirements - scrubber monitoring requirements
- Hydrochloric Acid Production NESHAP - Initial Compliance - Emission limits

Hydrochloric Acid Production NESHAP - Initial Compliance - Operating limits
FACILITY 40CFR 63- NNNNN.9035(b) 443 Hydrochloric Acid Production NESHAP - Continuous Compliance Monitoring - caustic scrubbers or water scrubbers/adsorbers

FACILITY 40CFR 63- NNNNN.9035(d) 444 Hydrochloric Acid Production NESHAP - Continuous Compliance Monitoring - requirement to continuously monitor during operation

FACILITY 40CFR 63- NNNNN.9035(e) 445 Hydrochloric Acid Production NESHAP - Continuous Compliance Monitoring - Collection of data for monitoring

FACILITY 40CFR 63- NNNNN.9040(c) 446 Hydrochloric Acid Production NESHAP - Continuous Compliance - deviations

FACILITY 40CFR 63- NNNNN.9045(f) 447 Hydrochloric Acid Production NESHAP - Notification of Compliance Status - Deadline for submittal

FACILITY 40CFR 63- NNNNN.9045(g) 448 Hydrochloric Acid Production NESHAP - Notification of Compliance Status - additional information to be submitted

FACILITY 40CFR 63- NNNNN.9050(a) 449 Hydrochloric Acid Production NESHAP - Reporting Requirements

FACILITY 40CFR 63- NNNNN.9050(b) 450 Hydrochloric Acid Production NESHAP - Reporting Requirements - Schedule to submit semiannual reports

FACILITY 40CFR 63- NNNNN.9050(c) 451 Hydrochloric Acid Production NESHAP - Reporting Requirements - Information to submit in compliance report

FACILITY 40CFR 63- NNNNN.9050(d) 452 Hydrochloric Acid Production NESHAP - Reporting Requirements - Information to submit for deviations in compliance report

FACILITY 40CFR 63- NNNNN.9050(e) 453 Hydrochloric Acid Production NESHAP - Reporting Requirements - Semiannual Title V
| FACILITY | 40CFR 63-NNNNN.9050(f) | 454 | report for deviations Hydrochloric Acid Production NESHAP - Reporting Requirements - Startup, shutdown, malfunction reporting Hydrochloric Acid Production NESHAP - Recordkeeping Requirements | | FACILITY | 40CFR 63-NNNNN.9055 | 455 | Hydrochloric Acid Production NESHAP - Recordkeeping Requirements | | FACILITY | 40CFR 63-NNNNN.9060 | 456 | Hydrochloric Acid Production NESHAP - Recordkeeping Requirements | | FACILITY | 40CFR 63-SS.983(a) | 199 | GMACT - Standards for closed vent systems - closed vent system equipment and operating requirements | | FACILITY | 40CFR 63-SS.983(b) | 200 | GMACT - Standards for closed vent systems - closed vent system inspection requirements | | FACILITY | 40CFR 63-SS.983(c) | 201 | GMACT - Requirements for closed vent systems - closed vent system inspection procedures | | FACILITY | 40CFR 63-SS.983(d) | 202 | GMACT - Requirements for closed vent systems - closed vent system leak repair provisions | | FACILITY | 40CFR 63-SS.988(a) | 203 | NESHAP For Closed Vent Systems, Control Devices, etc. - Incinerators, boilers, and process heaters equipment and operation | | FACILITY | 40CFR 63-SS.988(b) | 204, 205 | NESHAP For Closed Vent Systems, Control Devices, etc. - Incinerators, boilers, and process heaters - performance tests | | FACILITY | 40CFR 63-SS.990(a) | 206 | NESHAP For Closed Vent Systems, Control Devices, etc. - Absorbers & Condensers as Control Devices - equipment and operation | | FACILITY | 40CFR 63-SS.990(b) | 207 | NESHAP For Closed Vent Systems, Control Devices, etc. - Absorbers & Condensers as Control Devices - performance testing |
FACILITY 40CFR 63-SS.994(a) (2) 208 NEHAP for Closed Vent Systems & Control Devices - Halogen Scrubbers & Other Reduction Devices - equipment and operating

FACILITY 40CFR 63-SS.994(b) 209, 210 NEHAP for Closed Vent Systems & Control Devices - Halogen Scrubbers & Other Reduction Devices - performance testing

FACILITY 40CFR 63-SS.996 211 GMACT - General monitoring requirements for control and recovery devices

FACILITY 40CFR 63-SS.996(d) 212 NEHAP for Closed Vent Systems & Control Devices - Alternatives to Monitoring Requirements

FACILITY 40CFR 63-SS.998(a) (2) 213, 214 Recordkeeping Requirements

FACILITY 40CFR 63-SS.998(b) 215 Recordkeeping Requirements

FACILITY 40CFR 63-SS.998(c) 216 Recordkeeping Requirements

FACILITY 40CFR 63-SS.998(c)(1) 217 NEHAP for Closed Vent Systems & Control Devices - Recordkeeping Provisions - nonflare control & recovery device - monitoring

FACILITY 40CFR 63-SS.998(c)(2) 218 NEHAP for Closed Vent Systems & Control Devices - Recordkeeping Provisions - nonflare control device - combustion monitoring

FACILITY 40CFR 63-SS.998(d)(1) 219 NEHAP for Closed Vent Systems & Control Devices - Recordkeeping Provisions - Closed Vent System Records

FACILITY 40CFR 63-UU.1019 220 NESHAP for Equipment Leaks

FACILITY 40CFR 63-UU.1022 221 Equipment Identification

FACILITY 40CFR 63-UU.1023(a) 222 NESHAP for Equipment Leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks

FACILITY 40CFR 63-UU.1023(b) 223 NESHAP for Equipment Leaks - Control Level 2 - Instrument and Sensory Monitoring
New York State Department of Environmental Conservation
Permit Review Report

Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

for Leaks - Instrument monitoring methods
FACILITY 40CFR 63-UU.1023(c) 224
NESHAP for Equipment Leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks - Use of background adjustments

for Leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks - Leak identification and records
FACILITY 40CFR 63-UU.1023(e) 225
NESHAP for Equipment Leaks - Control Level 2 - Leak Repair - Leak repair schedule

for Leaks - Control Level 2 - Leak Repair - Leak identification removal
FACILITY 40CFR 63-UU.1024(a) 226
NESHAP for Equipment Leaks - Control Level 2 - Leak Repair - Delay of repair

for Leaks - Control Level 2 - Leak Repair - Unsafe to repair connectors
FACILITY 40CFR 63-UU.1024(b) 227
NESHAP for Equipment Leaks - Control Level 2 - Leak Repair - Records

for Leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Leak detection
FACILITY 40CFR 63-UU.1025(c) 228
NESHAP for Equipment Leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Percent leaking valves

for Leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Leak repair
FACILITY 40CFR 63-UU.1025(d) 229
NESHAP for Equipment Leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Unsafe to monitor
Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

FACILITY 40CFR 63-UU.1025(e)(2) 235 NESHAP for Equipment Leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Difficult to monitor

FACILITY 40CFR 63-UU.1025(e)(3) 236 NESHAP for Equipment Leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Fewer than 250 valves

FACILITY 40CFR 63-UU.1026 237 GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for pumps in light liquid service

FACILITY 40CFR 63-UU.1026(b)(4) 238, 239 NESHAP for Equipment Leaks - Control Level 2 - Pumps in Light Liquid Service - Visual inspections

FACILITY 40CFR 63-UU.1026(e) 240 NESHAP for Equipment Leaks - Control Level 2 - Pumps in Light Liquid Service - Special provisions for pumps

FACILITY 40CFR 63-UU.1027(b) 241 NESHAP for Equipment Leaks - Control Level 2 - Connectors in gas, vapor, and light liquid service - Leak Detection

FACILITY 40CFR 63-UU.1027(e)(1) 242 NESHAP for Equipment Leaks - Control Level 2 - Connectors in gas, vapor, and light liquid service - Unsafe to monitor

FACILITY 40CFR 63-UU.1027(e)(2) 243 NESHAP for Equipment Leaks - Control Level 2 - Connectors in gas, vapor, and light liquid service - Inaccessible and ceramic

FACILITY 40CFR 63-UU.1028 244, 245 GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for agitators in gas/vapor & light liquid service

FACILITY 40CFR 63-UU.1029 246 GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for equipment in heavy liquid service, etc.

FACILITY 40CFR 63-UU.1030 247 GMACT - NESHAP for Equipment Leaks - Control Level 2 -
New York State Department of Environmental Conservation
Permit Review Report
Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

Standards for pressure relief devices in gas/vapor service
NESHAP for Equipment Leaks - Control Level 2 - Compressors - Alternative standards
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for sampling connection systems

FACILITY 40CFR 63-UU.1031(f) 248

FACILITY 40CFR 63-UU.1032 249

FACILITY 40CFR 63-UU.1033 250

FACILITY 40CFR 63-UU.1035 251

FACILITY 40CFR 63-UU.1036 252

FACILITY 40CFR 63-UU.1038(b) 253

FACILITY 40CFR 63-UU.1038(c) 254

FACILITY 40CFR 63-UU.1039(a) 255

FACILITY 40CFR 63-UU.1039(b) 256

FACILITY 40CFR 63-ZZZZ.6625(e) 457

FACILITY 40CFR 63-ZZZZ.6625(f) 458

FACILITY 40CFR 63-ZZZZ.6640(f) 459

FACILITY 40CFR 68 19

FACILITY 40CFR 82-F 20

FACILITY 40CFR 98 460

FACILITY 6NYCRR 200.6 1

Acceptable ambient
<table>
<thead>
<tr>
<th>FACILITY</th>
<th>6NYCRR 200.7</th>
<th>10, 21</th>
<th>Maintenance of equipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-1.4</td>
<td>473</td>
<td>Unavoidable noncompliance and violations</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-1.7</td>
<td>11</td>
<td>Recycling and Salvage</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-1.8</td>
<td>12</td>
<td>Prohibition of reintroduction of collected contaminants to the air</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-3.2(a)</td>
<td>13</td>
<td>Exempt Activities - Proof of eligibility</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-3.3(a)</td>
<td>14</td>
<td>Trivial Activities - proof of eligibility</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-6</td>
<td>22, 461, 462</td>
<td>Title V Permits and the Associated Permit Conditions</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-6.4(a)(4)</td>
<td>15</td>
<td>General Conditions - Requirement to Provide Information</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-6.4(a)(7)</td>
<td>2</td>
<td>Fees</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-6.4(a)(8)</td>
<td>16</td>
<td>General Conditions - Right to Inspect Recordkeeping and Reporting of Compliance Monitoring Records of Monitoring, Sampling and Measurement Reporting Requirements - Deviations and Noncompliance Compliance Schedules - Progress Reports Compliance Certification Operational Flexibility</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-6.4(c)(2)</td>
<td>4</td>
<td>Off Permit Changes Federally Enforceable Emissions Caps Required emissions tests.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 201-7</td>
<td>463</td>
<td>Emission Statements - Applicability Emission Statements - record keeping requirements.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 202-1.1</td>
<td>18</td>
<td>General Prohibitions - air pollution prohibited General Prohibitions - visible emissions limited.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 202-2.1</td>
<td>7</td>
<td>Determination of Environmental Rating Limiting of Opacity Requirements</td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 211.1</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 211.2</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 212-1.3</td>
<td>29, 30</td>
<td></td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 212-1.6(a)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>FACILITY</td>
<td>6NYCRR 212-2.1</td>
<td>475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486,</td>
<td></td>
</tr>
</tbody>
</table>
Applicability Discussion:

Mandatory Requirements: The following facility-wide regulations are included in all Title V permits:

ECL 19-0301
This section of the Environmental Conservation Law establishes the powers and duties assigned to the Department with regard to administering the air pollution control program for New York State.

6 NYCRR 200.6
Acceptable ambient air quality - prohibits contravention of ambient air quality standards without mitigating measures

6 NYCRR 200.7
Anyone owning or operating an air contamination source which is equipped with an emission control device must operate the control consistent with ordinary and necessary practices, standards and procedures, as per
manufacturer's specifications and keep it in a satisfactory state of maintenance and repair so that it operates effectively.

6 NYCRR 201-1.4
This regulation specifies the actions and recordkeeping and reporting requirements for any violation of an applicable state enforceable emission standard that results from a necessary scheduled equipment maintenance, start-up, shutdown, malfunction or upset in the event that these are unavoidable.

6 NYCRR 201-1.7
Requires the recycle and salvage of collected air contaminants where practical.

6 NYCRR 201-1.8
Prohibits the reintroduction of collected air contaminants to the outside air.

6 NYCRR 201-3.2 (a)
An owner and/or operator of an exempt emission source or unit may be required to certify that it operates within the specific criteria described in this Subpart. All required records must be maintained on-site for a period of 5 years and made available to department representatives upon request. In addition, department representatives must be granted access to any facility which contains exempt emission sources or units, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations, or law.

6 NYCRR 201-3.3 (a)
The owner and/or operator of a trivial emission source or unit may be required to certify that it operates within the specific criteria described in this Subpart. All required records must be maintained on-site for a period of 5 years and made available to department representatives upon request. In addition, department representatives must be granted access to any facility which contains trivial emission sources or units subject to this Subpart, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations, or law.

6 NYCRR Subpart 201-6
This regulation applies to those terms and conditions which are subject to Title V permitting. It establishes the applicability criteria for Title V permits, the information to be included in all Title V permit applications as well as the permit content and terms of permit issuance. This rule also specifies the compliance, monitoring, recordkeeping, reporting, fee, and procedural requirements that need to be met to obtain a Title V permit, modify the permit and demonstrate conformity with applicable requirements as listed in the Title V permit. For permitting purposes, this rule specifies the need to identify and describe all emission units, processes and products in the permit application as well as providing the Department the authority to include this and any other information that it deems necessary to determine the compliance status of the facility.

6 NYCRR 201-6.4 (a) (4)
This mandatory requirement applies to all Title V facilities. It requires the permittee to provide information that the Department may request in writing, within a reasonable time, in order to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. The request may include copies of records required to be kept by the permit.

6 NYCRR 201-6.4 (a) (7)
This is a mandatory condition that requires the owner or operator of a facility subject to Title V requirements to pay all applicable fees associated with the emissions from their facility.
6 NYCRR 201-6.4 (a) (8)
This is a mandatory condition for all facilities subject to Title V requirements. It allows the Department to inspect the facility to determine compliance with this permit, including copying records, sampling and monitoring, as necessary.

6 NYCRR 201-6.4 (c)
This requirement specifies, in general terms, what information must be contained in any required compliance monitoring records and reports. This includes the date, time and place of any sampling, measurements and analyses; who performed the analyses; analytical techniques and methods used as well as any required QA/QC procedures; results of the analyses; the operating conditions at the time of sampling or measurement and the identification of any permit deviations. All such reports must also be certified by the designated responsible official of the facility.

6 NYCRR 201-6.4 (c) (2)
This requirement specifies that all compliance monitoring and recordkeeping is to be conducted according to the terms and conditions of the permit and follow all QA requirements found in applicable regulations. It also requires monitoring records and supporting information to be retained for at least 5 years from the time of sampling, measurement, report or application. Support information is defined as including all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by the permit.

6 NYCRR 201-6.4 (c) (3) (ii)
This regulation specifies any reporting requirements incorporated into the permit must include provisions regarding the notification and reporting of permit deviations and incidences of noncompliance stating the probable cause of such deviations, and any corrective actions or preventive measures taken.

6 NYCRR 201-6.4 (d) (5)
This condition applies to every Title V facility subject to a compliance schedule. It requires that reports, detailing the status of progress on achieving compliance with emission standards, be submitted semiannually.

6 NYCRR 201-6.4 (e)
Sets forth the general requirements for compliance certification content; specifies an annual submittal frequency; and identifies the EPA and appropriate regional office address where the reports are to be sent.

6 NYCRR 201-6.4 (f) (6)
This condition allows changes to be made at the facility, without modifying the permit, provided the changes do not cause an emission limit contained in this permit to be exceeded. The owner or operator of the facility must notify the Department of the change. It is applicable to all Title V permits which may be subject to an off permit change.

6 NYCRR 202-1.1
This regulation allows the department the discretion to require an emission test for the purpose of determining compliance. Furthermore, the cost of the test, including the preparation of the report are to be borne by the owner/operator of the source.

6 NYCRR 202-2.1
Requires that emission statements shall be submitted on or before April 15th each year for emissions of the previous calendar year.

6 NYCRR 202-2.5
This rule specifies that each facility required to submit an emission statement must retain a copy of the statement and supporting documentation for at least 5 years and must make the information available to department representatives.

6 NYCRR 211.2
This regulation limits opacity from sources to less than or equal to 20 percent (six minute average) except for one continuous six-minute period per hour of not more than 57 percent opacity.

6 NYCRR 215.2
Except as allowed by section 215.3 of 6 NYCRR Part 215, no person shall burn, cause, suffer, allow or permit the burning of any materials in an open fire.

40 CFR Part 68
This Part lists the regulated substances and their applicability thresholds and sets the requirements for stationary sources concerning the prevention of accidental releases of these substances.

40 CFR Part 82, Subpart F
Subpart F requires the reduction of emissions of class I and class II refrigerants to the lowest achievable level during the service, maintenance, repair, and disposal of appliances in accordance with section 608 of the Clean Air Act Amendments of 1990. This subpart applies to any person servicing, maintaining, or repairing appliances except for motor vehicle air conditioners. It also applies to persons disposing of appliances, including motor vehicle air conditioners, refrigerant reclaimers, appliance owners, and manufacturers of appliances and recycling and recovery equipment. Those individuals, operations, or activities affected by this rule, may be required to comply with specified disposal, recycling, or recovery practices, leak repair practices, recordkeeping and/or technician certification requirements.

Facility Specific Requirements
In addition to Title V, MOMENTIVE PERFORMANCE MATERIALS has been determined to be subject to the following regulations:

40 CFR 60.112b (a) (3)
This regulation requires owner or operators of storage vessels with the dimensions listed below, to install a closed vent system and control device to collect all volatile organic compounds that are discharged from the vessel. This requirement applies to storage vessels with the following dimensions: design capacity > 151 m3 containing a VOL that, as stored, has a maximum true vapor pressure > 5.2 kPa but < 76.6 kPa or with a design capacity > 75 m3 but < 151 m3 containing a VOL that, as stored, has a maximum true vapor pressure > 27.6 kPa but less than 76.7 kPa. The emissions from the storage vessel must be monitored and be less than 500 parts per million.

40 CFR 60.113b (c)
This regulation allows the owner or operator of the storage vessel equipped with a closed vent system and control device to be exempt from the requirements of 40 CFR 60.8 (General Provisions). The source owner or operator must provide documentation that the control device will achieve the required control efficiency during maximum loading conditions.

40 CFR 60.115b (c)
This regulation requires the owner or operator to keep records of the operating plan and record the measured values of the parameters monitored for the closed vent system.
40 CFR 60.116b (b)
Owners or operators of affected storage tanks with capacities greater than or equal to 10,000 gallons must keep records of the tanks dimensions and an analysis of its capacity for the life of the tank. If the tank’s capacity is less than 20,000 gallons, then it is subject to no other provisions of this subpart.

40 CFR 60.12
This regulation prohibits an owner or operator from concealing emissions in violation of applicable standards by any means.

40 CFR 60.13 (a)
This regulation specifies that all New Source Performance Standard (NSPS) affected sources that are required to have continuous monitoring systems (CMS) are subject to the requirements of Appendix B of 40 CFR Part 60 and if the CMS is used to demonstrate compliance with emission limits on a continuous basis, then it is also subject to Appendix F of 40 CFR Part 60.

40 CFR 60.13 (d)
This regulation contains the requirements for daily drift testing for continuous monitoring systems required by 40 CFR Part 60.

40 CFR 60.4
This condition lists the USEPA Region 2 address for the submittal of all communications to the "Administrator". In addition, all such communications must be copied to NYSDEC Bureau of Quality Assurance (BQA).

40 CFR 60.44b (h)
This regulation specifies that the NSPS nitrogen oxide standards apply at all time including periods of startup, shutdown, or malfunction.

40 CFR 60.48b (c)
This regulation requires that the continuous monitoring system (CMS) and data recorder for nitrogen oxides be operated during all periods of operation of the affected facility except for CMS breakdowns and repairs. Data must be recorded during calibration checks, and zero and span adjustments.

40 CFR 60.48b (f)
This regulation requires that standby methods of obtaining minimum emissions data for oxides of nitrogen be specified by the source owner or operator.

40 CFR 60.49b (g)
This subdivision requires reporting and recordkeeping for affected steam generating units - specific
oxides of nitrogen requirements.

40 CFR 60.662 (a)

Conditions under 40 CFR 60.662(a) require total organic compound emissions (not counting methane or ethane) from distillation operations at synthetic organic chemical manufacturing facilities to be reduced by 98% or to a concentration of 20 parts per million whichever is less stringent. This is part of the Federal New Source Performance Standards and applies only to facilities constructed, reconstructed or modified since December 30, 1983.

40 CFR 60.663 (a)

Conditions under 40 CFR 60.663(a) dictate the parameter(s) to be monitored for distillation operations using incinerators to control their total organic compound emissions. This provides an assurance of continuous compliance with the emission standard.

40 CFR 60.665

Conditions under 40 CFR 60.665 describe the reporting and recordkeeping requirements for facilities subject to the Distillation Operations New Source Performance Standards, as well as those that are exempt due to having a total resource effectiveness index value greater than 8.

40 CFR 60.7 (b)

This regulation requires the owner or operator to maintain records of the occurrence and duration of any startup, shutdown, or malfunction of the source or control equipment or continuous monitoring system.

40 CFR 60.7 (c)

This requirement details the information to be submitted in excess emissions and monitoring systems performance reports which must be submitted at least semi-annually for sources with compliance monitoring systems.

40 CFR 60.7 (d)

This condition specifies the required information and format for a summary report form and details when either a summary form and/or excess emissions reports are required.

40 CFR 60.7 (f)

This condition specifies requirements for maintenance of files of all measurements, including continuous monitoring system (CMS), monitoring device, and performance testing measurements; all CMS performance evaluations; all CMS or monitoring device calibration checks; adjustments and maintenance performed on these systems or devices for at least two years.

40 CFR 60.702 (a)

Conditions under 40 CFR 60.702(a) require total organic compound emissions (not counting methane or ethane) from reactor processes at synthetic organic chemical manufacturing facilities to be reduced by 98% or to a concentration of 20 parts per million whichever is less stringent. This is part of the Federal...
New Source Performance Standards and applies only to facilities constructed, reconstructed or modified since June 29, 1990. Applicability under this section also triggers monitoring under §703, testing under §704, and reporting and recordkeeping under §705.

40 CFR 61.145

40 CFR 63.1019
This is a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks.

40 CFR 63.102 (a) (2)
This condition specifies that the requirements of the HON rule do not apply during periods of startup, shutdown, or malfunction. The rule also does not apply when the process unit's lines are drained and depressurized.

40 CFR 63.1022
Conditions under this section relate to the identification of equipment subject to Subpart UU. Physical tagging of the equipment (pumps, valves, connectors, etc.) is not required, but is allowed as one method of identification. Other allowable methods are by a site plan, log entries, designation of process boundaries, etc. Equipment identification is needed so equipment subject to leak detection monitoring can be differentiated from equipment not needing monitoring.

40 CFR 63.1023 (a)
This is a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks.

40 CFR 63.1023 (b)
This is a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks - Instrument monitoring.

40 CFR 63.1023 (c)
This is a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks - Use of background.

40 CFR 63.1023 (e)
This is a National Emissions Standard for Hazardous Air Pollutants
(NESHAP) for Equipment leaks - Control Level 2 - Instrument and Sensory Monitoring for Leaks - Leak identification and records.

40 CFR 63.1024 (a)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Leak Repair - Leak repair schedule.

40 CFR 63.1024 (c)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Leak Repair - Leak identification removal.

40 CFR 63.1024 (d)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Leak Repair - Delay of repair

40 CFR 63.1024 (e)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Leak Repair - Unsafe to repair connectors.

40 CFR 63.1024 (f)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Leak Repair - Records.
40 CFR 63.1025 (b)
This is a National Estrument and Sensory Monitorizations Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Leak detection.

40 CFR 63.1025 (c)
This is a National Estrument and Sensory Monitorizations Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Percent leaking valves

40 CFR 63.1025 (d)
This is a National Estrument and Sensory Monitorizations Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Percent leaking valves
40 CFR 63.1025 (e) (1)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Unsafe to monitor

40 CFR 63.1025 (e) (2)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Difficult to monitor

40 CFR 63.1025 (e) (3)
This is a National Estrument and Sensory Monitomissions Standard for Hazardous Air Pollutants (NESHAP) for Equipment leaks - Control Level 2 - Valves in Gas, Vapor, and Light Liquid Service - Fewer than 250 valves
40 CFR 63.1026
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for pumps in light liquid service

40 CFR 63.1026 (b) (4)
NESHAP for Equipment Leaks - Control Level 2 - Pumps in Light Liquid Service - Visual inspections

40 CFR 63.1026 (e)
NESHAP for Equipment Leaks - Control Level 2 - Pumps in Light Liquid Service - Special provisions for pumps

40 CFR 63.1027 (b)
NESHAP for Equipment Leaks - Control Level 2 - Connectors in gas, vapor, and light liquid service - Leak Detection

40 CFR 63.1027 (e) (1)
NESHAP for Equipment Leaks - Control Level 2 - Connectors in gas, vapor, and light liquid service - Unsafe to monitor

40 CFR 63.1027 (e) (2)
NESHAP for Equipment Leaks - Control Level 2 - Connectors in gas, vapor, and light liquid service - Inaccessible and ceramic

40 CFR 63.1028
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for agitators in gas/vapor & light liquid service
40 CFR 63.1029
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for equipment in heavy liquid service, etc.

40 CFR 63.1030
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for pressure relief devices in gas/vapor service

40 CFR 63.1031 (f)
NESHAP for Equipment Leaks - Control Level 2 - Compressors - Alternative standards

40 CFR 63.1032
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for sampling connection systems

40 CFR 63.1033
GMACT - NESHAP for Equipment Leaks - Control Level 2 - Standards for open-ended valves or lines

40 CFR 63.1035
When a large percentage of the pumps within the facility and subject to this rule leak, a quality improvement program (QIP) to reduce the number of leaking pumps is triggered. Conditions under this section describe the requirements QIP including it's recordkeeping and reporting requirements.

40 CFR 63.1036
Conditions under this section provide alternatives to the leak detection and repair standards of sections 63.1025 through 63.1033. They also describe the means of tracking changes of operation between the alternatives.

40 CFR 63.1038 (b)
NESHAP for Equipment Leaks - Control Level 2 - Recordkeeping - General equipment leak records

40 CFR 63.1038 (c)
NESHAP for Equipment Leaks - Control Level 2 - Recordkeeping - Specific equipment leak records
40 CFR 63.1039 (a)
Reporting Requirements

40 CFR 63.1039 (b)
Reporting Requirements

40 CFR 63.104
If there are heat exchangers in a process unit that is subject to the Hazardous Organic NESHAP rule, the facility must monitor the heat exchangers for leaks in order to prevent organic hazardous air pollutants from entering the coolant water supply. The facility can choose to either monitor the cooling water directly or measure some other parameter that would indicate a leak in the heat exchange equipment.

40 CFR 63.105
This condition requires that the facility prepare a plan on how to manage the wastewater containing organic hazardous air pollutants that is generated during process unit maintenance or shutdown. This plan should include every task that creates this type of wastewater and how best to handle the water to minimize the amount of organic hazardous air pollutants that get released to the atmosphere.

40 CFR 63.113
This regulation, 40 CFR 63 Subpart G, provides the reference control technology for process vents subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.113 (a) (2)
This allows the owner/operator to either reduce the total OHAP concentration in the vent stream by 98% by weight or to reduce the total OHAP or TOC concentration to 20 ppmv, whichever is less stringent.

40 CFR 63.113 (b)
This condition controls the emissions of hazardous air pollutants by requiring that if the facility is controlling emissions of the gas stream by using a process heater or a boiler, then the stream must be introduced into the flame zone. This helps to ensure complete combustion within the boiler/process heater and therefore minimizes the amount of hazardous air pollutants that could escape to the atmosphere.

40 CFR 63.114
This regulation, 40 CFR 63 Subpart G, provides the monitoring requirements for process vents subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical
New York State Department of Environmental Conservation
Permit Review Report

Permit ID: 5-4154-00002/01743
Renewal Number: 3
06/11/2018

Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.114 (a) (1) (i)
This citation establishes monitoring requirements for Process vents.

40 CFR 63.114 (a) (3)
This regulation, 40 CFR 63 Subpart G, provides the monitoring requirements for process vents subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.114 (a) (4) (i)
This regulation, 40 CFR 63 Subpart G, provides the monitoring requirements for process vents subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.114 (a) (4) (ii)
This regulation, 40 CFR 63-G.114(a)(4)(ii), provides the monitoring requirements for process vents subject to a NESHAP from the SOCMI for process vents, storage vessels, transfer operations and wastewater.

40 CFR 63.119 (b)
In order to reduce the emissions of organic hazardous air pollutants from storage vessels, a facility may elect to install a fixed roof and an internal floating roof on the storage vessel. This condition requires the facility to install certain equipment (seals, gaskets, etc.) designed to reduce any direct contact between the liquid in the storage tank and the atmosphere. Periodic inspections to insure that there are no leaks from the internal floating roof into the atmosphere are also required in this condition.

40 CFR 63.119 (e)
In order to reduce the emissions of organic hazardous air pollutants from storage vessels, a facility may elect to install a system that routes all of the emissions from the storage vessel to a control device. This condition requires that the control device reduces the organic hazardous air pollutants in this captured stream by 90-95% depending on when the control device was installed.

40 CFR 63.1206 (a) (1) (ii) (A)
This regulation, 40 CFR 63 Subpart EEE, details when and how a facility must comply with the applicable requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.
40 CFR 63.1206 (b)
Summary of Compliance with standards (see regulation for detailed descriptions)
(1) Applicability.
(2) Methods for determining compliance.
(3) Finding of compliance.
(4) Extension of compliance with emission standards.
(5) Changes in design, operation, or maintenance.
(6) Compliance with the carbon monoxide and hydrocarbon emission standards.
(7) Compliance with the DRE standard.
(8) Applicability of particulate matter and opacity standards during particulate matter CEMS correlation tests.
(9) Alternative standards for existing or new hazardous waste burning lightweight aggregate kilns using MACT.
(10) Alternative standards for existing or new hazardous waste burning cement kilns using MACT.
(11) Calculation of hazardous waste residence time.
(12) Documenting compliance with the standards based on performance testing.
(13) Cement kilns and lightweight aggregate kilns that feed hazardous waste at a location other than the end where products are normally discharged and where fuels are normally fired.
(14) Alternative particulate matter standard for incinerators with de minimis metals.

40 CFR 63.1206 (c)
Summary of Operating requirements --
(1) General.
(2) Startup, shutdown, and malfunction plan.
(3) Automatic waste feed cutoff
(4) ESV openings
(5) Combustion System Leaks
(6) Operator training and certification.
(7) Operation and maintenance plan

40 CFR 63.1207
This citation specifies the performance testing requirements as follows:
(a) General.
(b) Types of performance tests
(c) Initial comprehensive performance test
(d) Frequency of testing.
(e) Notification of performance test and CMS performance evaluation, and approval of test plan and CMS performance evaluation plan.
(f) Content of performance test plan.
(g) Operating conditions during testing.
(h) Operating conditions during subsequent testing.
(i) Time extension for subsequent performance tests.
(j) Notification of Compliance
(k) Failure to submit a timely notification of compliance.
(l) Failure of performance test
(m) Waiver of Performance Test
(n) Feedrate limits for nondetectable constituents.
40 CFR 63.1209

What are the monitoring requirements?

(a) Continuous emissions monitoring systems (CEMS) and continuous opacity monitoring systems (COMS).
(b) Other continuous monitoring systems (CMS).
(c) Analysis of feedstreams.
(d) Performance evaluations.
(e) Conduct of monitoring.
(f) Operation and maintenance of continuous monitoring systems.
(g) Alternative monitoring requirements other than continuous emissions monitoring systems (CEMS).
(h) Reduction of monitoring data.
(i) When an operating parameter is applicable to multiple standards.
(j) DRE.
(k) Dioxins and furans.
(l) Mercury
(m) Particulate matter.
(n) Semivolatile metals and low volatility metals.
(o) Hydrochloric acid and chlorine gas.
(p) Maximum combustion chamber pressure.
(q) Operating under different modes of operation.

40 CFR 63.1209 (a) (1) (i)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (a) (1) (iii)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (a) (2)
This condition requires the facility to ensure that the continuous monitor that is installed to be properly maintained and operated so that the emission results it reads is accurate.

40 CFR 63.1209 (a) (3) (i)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous
Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (a) (6) (i)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (a) (6) (ii)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.40

40 CFR 63.1209 (a) (6) (iii)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (a) (7)
This condition explains how the facility is expected to ensure that the emission standard for hydrocarbons is not exceeded. Basically, the facility is expected to set limits based on the readings of a continuous monitor and limits relating to a specific destruction and removal efficiency (DRE) during the performance test and continuously comply with them.

40 CFR 63.1209 (c) (1)
This condition requires the facility to analyze each feedstream to determine whether the properties of the feedstream are within the parameter limits.

40 CFR 63.1209 (c) (2)
This condition requires the facility to develop a feedstream analysis plan in order to determine whether the properties of the feedstream meet the operating limits in this subpart. This analysis should include information on what the facility will measure, and how the parameter will be measured. The plan will be recorded in the facility's operating record.

40 CFR 63.1209 (c) (4)
This condition describes how the facility is expected to comply with the feedstream parameter limits. The condition requires a continuous monitoring system to measure the proper parameters of the feedstream so that the facility can calculate and record the parameter to ensure the parameter's limit is not exceeded.

40 CFR 63.1209 (j) (1)
This condition requires that in order for the facility to determine if it is complying with the destruction and removal efficiency standard, then a minimum combustion temperature must be established during the performance test. This temperature would be representative of the minimum temperature that will destroy the hazardous air pollutant emissions sufficiently to satisfy the limit in this subpart.

40 CFR 63.1209 (j) (3)
This condition requires that in order for the facility to determine if it is complying with the destruction and removal efficiency standard, then a maximum hazardous waste feedrate must be established during the performance test. This feedrate would be representative of the maximum value that will ensure that the hazardous air pollutant emissions are sufficiently reduced to satisfy the emission limits in this subpart.

40 CFR 63.1209 (j) (4)
This condition requires that in order for the facility to determine if it is complying with the destruction and removal efficiency standard, then parameters must be established during the performance test which indicate proper operation of the waste firing system.

40 CFR 63.1209 (l) (1)
During the comprehensive performance test, the maximum level of mercury is established which will ensure that the hazardous waste combustor does not exceed the emission limit for mercury. The facility will then need to monitor the mercury content of the hazardous waste to prove that the limit has not been exceeded.

40 CFR 63.1209 (m) (1) (i) ('B') ('1')
This regulation requires that the liquid level in the Entrainment Separator Sump (Control Device 09510) (Venturi/Separator Recycle Tank) be maintained at or above 33 inches on a rolling hourly basis. The liquid level shall be monitored on a continuous basis when wastewater, grit or debris is being incinerated.

40 CFR 63.1209 (m) (1) (i) ('B') ('2')
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (m) (1) (i) ('B') ('4')
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1209 (m) (3)
This regulation requires that the facility owner or operator limit the maximum ash feed rate to the hazardous waste incinerator to reduce emissions of particulate matter. The ash feed rate shall be monitored on a continuous basis using data collected as described in the feed analysis plan and shall be
established during each comprehensive performance test.

40 CFR 63.1209 (n) (2)
This regulation requires that the Multiple Hearth Incinerator (MHI) not exceed 14,441 grams/12 hour on a rolling 12-hourly basis. The low-volatile metal feed rate shall be monitored on a continuous basis using data collected for the feed analysis plan and the continuous sludge feed rate measurement when wastewater, grit or debris is being incinerated.

40 CFR 63.1209 (n) (2) (ii)
When the facility is monitoring the hazardous waste feedstream for the amount of metals being loaded into the hazardous waste combustor, the facility must set a limit based on the loading during the comprehensive performance test. This condition allows the facility to use extrapolation if they wish to feed more metals into the combustor, as long as the calculation shows that the facility will still be under the emission limits for metals.

40 CFR 63.1209 (n) (4)
In order for the hazardous waste combustor to meet the emission limits for metals, then during the comprehensive performance test the facility must establish operating limits that prove that the facility will be in compliance with the metal limits as long as the operating parameter is being met. This condition specifically requires the facility to set a limit for the amount of chlorine and chloride in the hazardous waste feedstream.

40 CFR 63.1209 (o) (3) (ii)
If the facility equips the hazardous waste combustor with a low energy wet scrubber, then this condition requires the facility to monitor certain parameters to make sure the scrubber is working properly to control hydrochloric acid and chloride gas emissions. This condition specifically requires the facility to monitor the pressure drop across the scrubber.

40 CFR 63.1209 (o) (3) (iii)
If the facility equips the hazardous waste combustor with a low energy wet scrubber, then this condition requires the facility to monitor certain parameters to make sure the scrubber is working properly to control hydrochloric acid and chloride gas emissions. This condition specifically requires the facility to monitor the minimum liquid feed pressure in the scrubber.

40 CFR 63.1209 (o) (3) (iv)
If the facility equips the hazardous waste combustor with a wet scrubber, then this condition requires the facility to monitor certain parameters to make sure the scrubber is working properly to control hydrochloric acid and chloride gas emissions. This condition specifically requires the facility to monitor the pH in the scrubber.

40 CFR 63.1209 (o) (3) (v)
If the facility equips the hazardous waste combustor with a low energy wet scrubber, then this condition
requires the facility to monitor certain parameters to make sure the scrubber is working properly to control hydrochloric acid and chloride gas emissions. This condition specifically requires the facility to monitor the minimum liquid-gas ratio or minimum scrubber water flowrate and maximum flue gas flowrate in the scrubber.

40 CFR 63.1209 (p)
This condition reduces the emissions of hazardous air pollutants by requiring the facility to keep the pressure inside of the combustion chamber of the hazardous waste combustor under that of the atmosphere outside of the combustor. This reduces the chance of leaks from the combustor escaping into the atmosphere.

40 CFR 63.1210 (a)
This regulation, 40 CFR 63 Subpart EEE, details the notification requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1210 (b)
This regulation, 40 CFR 63 Subpart EEE, details the notification requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1210 (d)
This regulation, 40 CFR 63 Subpart EEE, details the notification requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1211 (a)
Hazardous Waste Combustion NESHAP - Record Keeping and Reporting Requirements.

40 CFR 63.1211 (b)
This condition lists the information that the facility must keep on record at the plant. This information will assist the NYSDEC when the facility is inspected in order to determine whether the plant has been in compliance with the emission standards listed in this subpart EEE. Information that must be recorded includes instrument readings which indicate whether any control devices were working, whether there were any startups, shutdowns, or malfunctions at the facility, and whether the plant has changed its operation in a way that could affect the emissions from the incinerator.

40 CFR 63.1211 (c)
This regulation, 40 CFR 63 Subpart EEE, details the record keeping and reporting requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions

40 CFR 63.1219 (a)
The emission limit for dioxin from the unit is 0.20 nanograms of TEQ per dry standard cubic foot

40 CFR 63.1219 (c) (1)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1219 (c) (3) (ii)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.1219 (e)
This regulation, 40 CFR 63 Subpart EEE, details the monitoring requirements for a facility subject to the requirements for Hazardous Waste Incinerators subject to a National Emissions Standard for Hazardous Air Pollutant from Hazardous Waste Combustors.

40 CFR 63.123 (a)
This condition requires the facility to keep a record of the dimensions and the capacity of any storage vessel that is subject to the HON rule.

40 CFR 63.132 (a) (3)
According to this condition, the facility must keep certain records for wastewater streams that are not considered a high risk of hazardous air pollutant emissions. These records will ensure that the stream(s) remain a minor source of emissions and are subject to verification by the New York State DEC.

40 CFR 63.132 (f)
This regulation, 40 CFR 63 Subpart G, provides the general process waste water requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.133 (a) (1)
This regulation, 40 CFR 63 Subpart G, provides the requirements for waste water tanks subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical
Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.133 (a) (2)
This regulation, 40 CFR 63 Subpart G, provides the requirements for waste water tanks subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.133 (f)
This regulation, 40 CFR 63 Subpart G, provides the requirements for waste water tanks subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.135 (b)
This regulation, 40 CFR 63 Subpart G, provides the requirements for containers subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.135 (c)
This regulation, 40 CFR 63 Subpart G, provides the requirements for containers subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.135 (e)
This regulation, 40 CFR 63 Subpart G, provides the requirements for containers subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.135 (f)
This regulation, 40 CFR 63 Subpart G, provides the requirements for containers subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.136
This regulation, 40 CFR 63 Subpart G, provides the requirements for individual drain systems subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.
40 CFR 63.138 (a)
This regulation, 40 CFR 63 Subpart G, provides the requirements for treatment processes managing Group 1 wastewater streams and/or residuals removed from streams and/or residuals removed from Group 1 wastewater streams subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.138 (k)
This regulation, 40 CFR 63 Subpart G, provides the requirements for treatment processes managing Group 1 wastewater streams and/or residuals removed from streams and/or residuals removed from Group 1 wastewater streams subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.139 (b)

40 CFR 63.139 (c)
This regulations details the requirements for Process wastewater control devices.

40 CFR 63.139 (f)

40 CFR 63.140
This regulations details the provisions for delay of repair for Process wastewater sources.

40 CFR 63.143 (e)
This regulations details the inspection and monitoring of operations requirements for Process wastewater sources.
40 CFR 63.143 (g)
This regulation details the inspection and monitoring of operations requirements for Process wastewater sources.

40 CFR 63.145 (h)
This regulation details the test methods and procedures to determine compliance for Process wastewater sources.

40 CFR 63.146 (b)

40 CFR 63.147

40 CFR 63.148
This regulation, 40 CFR 63 Subpart G, contains the leak inspection requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.148 (b) (1)
This condition requires any vapor collection system and closed-vent system that consists of hard-piping to be periodically checked for leaks of organic hazardous air pollutants. There shall be an initial inspection of the entire system using an analyzer. Subsequently, the systems shall be looked at annually and checked to see if there is any physical evidence (sight, smell, etc.) of a leak.

40 CFR 63.148 (d)
This condition requires the facility to repair any leaks found on a closed-vent or vapor collection system that is subject to the HON rule. This condition helps minimize the fugitive losses of organic hazardous air pollutants by ensuring that the facility repairs all leaks within 15 days. Adequate records also are required in order to keep track of the leaks in these systems.

40 CFR 63.148 (e)
This condition allows a facility that found leaks in a vapor collection system or closed-vent system to delay the repair of these leaks. The leaks may be delayed if doing so would create more emissions of
organic hazardous air pollutants than otherwise would result from leaving the leak alone.

40 CFR 63.148 (i)
This regulation, 40 CFR 63 Subpart G, contains the leak inspection requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.148 (j)
This regulation, 40 CFR 63 Subpart G, contains the leak inspection requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater.

40 CFR 63.152 (d) (1)
This condition requires the facility to submit reports of startups, shutdowns, and malfunctions that occur during each 6-month period.

40 CFR 63.160
This section of the Equipment Leaks portion of the Hazardous Organic NESHAP rule describes the types of equipment subject to the rule and types that are exempt. It also describes how overlap with other federal regulations are handled.

40 CFR 63.162 (c)
HON NESHAP for equipment leaks.

40 CFR 63.162 (f)
This condition requires the facility to identify which pieces of equipment is leaking hazardous air pollutants. The facility is generally allowed to remove the indicator sign once the equipment has been remonitored and is no longer leaking.

40 CFR 63.163 (a)
This regulation, 40 CFR 63 Subpart H, contains the Standards for pumps in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks

40 CFR 63.163 (b) (1)
This regulation, 40 CFR 63 Subpart H, contains the Standards for pumps in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.163 (b) (2)
This paragraph of the Equipment Leaks rule defines leaks for pumps in light liquid service. Leaks are not violations but trigger attempts at repair.

40 CFR 63.163 (b) (3)
This regulation, 40 CFR 63 Subpart H, contains the Standards for pumps in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.163 (d) (1)
This paragraph of the equipment leaks rule describes how to calculate the percent of leaking pumps in light liquid service. The result is used to determine whether or not a quality improvement program for pumps is required.

40 CFR 63.164 (i)
This regulation, 40 CFR 63 Subpart H, contains the Standards for compressors subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.165 (d) (2)
This regulation, 40 CFR 63 Subpart H, contains the standards for pressure relief devices in gas/vapor service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.166
This condition reduces the emissions of hazardous air pollutants by requiring the facility to install sampling connection systems in such a way that the sampling system is either closed or disposed of in an approved method.

40 CFR 63.167 (a) (1)
This regulation, 40 CFR 63 Subpart H, contains the standards for open-ended valves or lines subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.167 (b)
This condition reduces the fugitive emissions of hazardous air pollutants by requiring that when a facility has an open-ended valve or line that is subject to subpart H, there needs to be a valve on the process side that is closed before the second valve is closed. This will greatly reduce the accidental release of fluids that contain hazardous air pollutants.

40 CFR 63.167 (c)
This regulation, 40 CFR 63 Subpart H, contains the standards for open-ended valves or lines subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.
40 CFR 63.167 (d)
This regulation, 40 CFR 63 Subpart H, contains the standards for open-ended valves or lines subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.168 (b)
This regulation, 40 CFR 63 Subpart H, contains the standards for valves in gas/vapor service and in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.168 (f) (1)
This regulation, 40 CFR 63 Subpart H, contains the standards for valves in gas/vapor service and in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.168 (h)
This regulation, 40 CFR 63 Subpart H, contains the standards for valves in gas/vapor service and in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.168 (i)
This regulation, 40 CFR 63 Subpart H, contains the standards for valves in gas/vapor service and in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.171 (a)
This condition allows the facility to delay repair of a leaking piece of equipment if the facility deems it to be technically infeasible to do so. The repair must be done the next time the process is not in operation.

40 CFR 63.171 (b)
This condition allows the facility to delay the repair of a leaking piece of equipment if the leaking equipment is isolated and no longer contains organic hazardous air pollutants.

40 CFR 63.171 (c)
This condition allows facilities the option to delay the repair of certain types of equipment that are leaking hazardous air pollutants if the repair of that equipment would cause more emissions than if they left the equipment alone. In these cases, the material that was purged during the repair must be collected and controlled in order to further reduce the emissions of hazardous air pollutants.
40 CFR 63.171 (d)
This condition allows the facility to delay the repair of pumps if the repair entails:

- implementing a quality improvement program (QIP) for the pump,
- replacing the pump with one that is much less susceptible to leaking, or
- venting emissions from the pump to a closed-vent system with a control device.

The facility will be given up to six months to repair the leaking pump.

40 CFR 63.171 (e)
This condition allows the facility to extend a delayed repair beyond a process unit shutdown for valves if certain, specific extenuating circumstances are being faced.

40 CFR 63.174 (a)
This condition reduces the emissions of hazardous air pollutants by requiring the facility to periodically check for leaks in certain connectors. The facility then has a limited amount of time in order to repair the leak and stop the fugitive emissions of hazardous air pollutants. The facility may reduce the frequency of monitoring for leaks if the percentage of connectors that are leaking is below a certain threshold. Records must be kept and reports must be submitted verifying compliance with this condition.

40 CFR 63.174 (c) (1) (i)
This condition specifies the different monitoring requirements for connectors that has been opened. The facility must either monitor the connector right away or must automatically count it as a leaking connector when calculating the monitoring frequency of connectors throughout the facility.

40 CFR 63.174 (c) (2)
This regulation, 40 CFR 63 Subpart H, contains the standards for connectors in gas/vapor service and in light liquid service and subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.174 (f)
This condition allows the facility to skip the periodic monitoring of connectors that are not safe for personnel to monitor. A written plan must be developed requiring monitoring as often as possible during times when it is safe to monitor the connector.

40 CFR 63.174 (g)
This condition allows the facility to delay repairing of a connector if it is deemed to be unsafe for personnel to repair until the next shutdown.

40 CFR 63.174 (h) (1)
This regulation, 40 CFR 63 Subpart H, contains the standards for connectors in gas/vapor service and in

40 CFR 63.175

40 CFR 63.181 (a)
This condition specifies certain recordkeeping requirements for facilities that are subject to Subpart H. These requirements basically require the facility to make all of the records readily accessible so that they may be verified by an inspector.

40 CFR 63.181 (b)
This condition lists some of the records that the facility must keep in order to verify compliance with Subpart H. This condition specifically requires the company to keep lists of each piece of equipment that is supposed to be monitored according to the provisions in Subpart H.

40 CFR 63.181 (c)
This regulation, 40 CFR 63 Subpart H, contains recordkeeping requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.181 (d)
This regulation, 40 CFR 63 Subpart H, contains recordkeeping requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.181 (f)
This regulation, 40 CFR 63 Subpart H, contains recordkeeping requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.181 (h)
This regulation, 40 CFR 63 Subpart H, contains recordkeeping requirements for sources subject to a National Emissions Standard for Organic Hazardous Air Pollutants for Equipment Leaks.

40 CFR 63.182 (d)
This condition lists the items that the facility must enter in their semi-annual periodic report. The items include the number of pieces of equipment that were monitored, how many pieces of equipment were found to be leaking and whether the leaks were repaired.
40 CFR 63.2450 (a)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2450 (b)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2450 (e)
Miscellaneous Organic Chemical Mfg. NESHAP - Control Devices

40 CFR 63.2450 (h)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2450 (i)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2450 (j)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2450 (k)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2450 (l)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.
40 CFR 63.2450 (p)
This regulation, 40 CFR 63 Subpart FFFF, details the general requirements to comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2455 (a)
Emissions of total organic HAP from continuous process vents in an MCPU regulated under the MON must be reduced by ≥8 percent by weight or to an outlet process concentration ≤0 ppmv as organic HAP or TOC by venting emissions through a closed-vent system to any combination of control devices (except a flare). Group 1 continuous process vents from this process are routed to the existing MCS vent incinerator (MCSV1) and scrubber (MCSV5) for control of organic HAP. In addition, two surge control vessels (62TRD) meet the capacity and vapor threshold of Group 1 storage tanks; emissions from these vessels also are routed to MCSV1 and MCSV5. The temperature in the fire box will be monitored continuously in accordance with 40 CFR 63.988(c)(1). The minimum allowable temperature will be determined during the initial compliance test to be conducted in accordance with 40 CFR 63.2460(c). Records will be maintained in accordance with 40 CFR Section 63.998.

40 CFR 63.2455 (b)
This regulation, 40 CFR 63 Subpart FFFF, details when a facility must comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2460 (a)
This regulation, 40 CFR 63 Subpart FFFF, details when a facility must comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2460 (b)
This regulation, 40 CFR 63 Subpart FFFF, details when a facility must comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2460 (c)
This regulation, 40 CFR 63 Subpart FFFF, details when a facility must comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.
40 CFR 63.2460 (c) (7)
This regulation, 40 CFR 63 Subpart FFFF, details when a facility must comply with the requirements for National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2465 (a)
This regulation details the requirements which must be met for process vents that emit hydrogen halide and halogen HAP or HAP metals.

40 CFR 63.2480
This regulation, 40 CFR 63 Subpart FFFF, details the requirements to meet for equipment leaks for facilities subject to the National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2485 (c)
This regulation, 40 CFR 63 Subpart FFFF, details the requirements to meet for wastewater streams and liquid streams in open systems within an MCPU for facilities subject to the National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2520 (c)
This regulation, 40 CFR 63 Subpart FFFF, details what reports must be submitted and when for facilities subject to the National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2525
This regulation, 40 CFR 63 Subpart FFFF, details what reports must be submitted and when for facilities subject to the National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.2535 (g)
This regulation, 40 CFR 63 Subpart FFFF, details what reports must be submitted and when for facilities subject to the National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing.

40 CFR 63.6 (e) (1)
This condition requires the facility to address the emissions of hazardous air pollutants (HAPs) during periods when the process(es) are starting up, shutting down, or malfunctioning. This condition requires the facility to come up with a startup, shutdown, malfunction plan (SSMP) which addresses how the plant personnel will react to each of the situations when the process(es) are not functioning normally and what steps will be taken to reduce the release of HAPs to the atmosphere.

If the facility takes actions which aren't in the SSMP, then the facility needs to notify NYSDEC, and update the SSMP accordingly.

The facility must have the SSMP available upon request for the NYSDEC to review.

40 CFR 63.6 (e) (1) (i)
Paragraph 63.6(e) requires that affected sources including air pollution control equipment must be operated and maintained to minimize emissions "at least to the level required by all relevant standards." It further requires that this be done at all time including during periods of startup, shutdown, and malfunction (SSM). Also operation during those times must be according to a SSM plan. §63.6(f) indicates however that nonopacity emission standards do not apply during SSM periods. Thus at those times the owner or operator must minimize emissions.

40 CFR 63.6 (e) (3)
Paragraph 63.6(e)(3) requires a startup, shutdown, and malfunction (SSM) plan for MACT-affected sources and that the plan be followed.

40 CFR 63.6 (f) (1)
This section states that nonopacity standards apply at all times except during periods of startup, shutdown, and malfunction.

40 CFR 63.6 (f) (2) (i)
§63.6(f)(2) states that compliance with nonopacity standards shall be based on the results of performance tests using procedures in §63.7 and on conformance with the operation and maintenance requirements of §63.6(e).

40 CFR 63.6 (f) (2) (ii)
§63.6(f)(2) states that compliance with nonopacity standards shall be based on the results of performance tests using procedures in §63.7 and on conformance with the operation and maintenance requirements of §63.6(e).

40 CFR 63.6625 (e)
This regulation requires the owners or operator of an existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions, an existing stationary emergency RICE, or an existing stationary RICE located at an area source of HAP emissions must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop their own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.
40 CFR 63.6625 (f)
This condition reduces the emission of hazardous air pollutants by requiring existing emergency engines greater than or equal to 500 brake horsepower located at a major source of HAP emissions and existing emergency engines located at an area source of HAP emissions to install a non-resettable hour meter.

40 CFR 63.6640 (f)
This condition states the operation requirements for emergency engines.

40 CFR 63.680 (d)
This regulation, 40 CFR 63 Subpart DD, lists the applicability and designation of affected sources subject to a National Emissions Standard for Hazardous Air Pollutant from Off-Site Waste and Recovery Operations.

40 CFR 63.7500 (a) (1)
These conditions state what emission limits and management practices affected sources with which the owner or operator must comply

40 CFR 63.7540 (a)
This condition states how to demonstrate continuous compliance with emission limits, work practice standards, and operating limits.

40 CFR 63.7545 (e)
This condition states the requirements of the notification of compliance status

40 CFR 63.7550 (b)
This condition states when reports must be submitted.

40 CFR 63.7881 (c)
This regulation, 40 CFR 63 Subpart GGGGG, details who is subject to the National Emissions Standard for Hazardous Air Pollutants from Site Remediation.
40 CFR 63.9000 (a)
This regulation, 40 CFR 63 Subpart NNNNN, details the applicable emission limits and work practice standards for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9000 (b)
This regulation, 40 CFR 63 Subpart NNNNN, details the applicable emission limits and work practice standards for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9005 (a)
This regulation, 40 CFR 63 Subpart NNNNN, details the general requirements for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9005 (b)
This regulation, 40 CFR 63 Subpart NNNNN, details the general requirements for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9005 (c)
This regulation, 40 CFR 63 Subpart NNNNN, details the general requirements for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9005 (d)
This regulation, 40 CFR 63 Subpart NNNNN, details the general requirements for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9020 (b)
This regulation, 40 CFR 63 Subpart NNNNN, specifies required performance tests and procedures for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9020 (e)
This regulation, 40 CFR 63 Subpart NNNNN, specifies required performance tests and procedures for sources subject to the requirements for National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9025 (a)
This regulation, 40 CFR 63 Subpart NNNNN, specifies monitoring installation, operation and maintenance requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9025 (b)
This regulation, 40 CFR 63 Subpart NNNNN, specifies monitoring installation, operation and maintenance requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9030 (a)
This regulation, 40 CFR 63 Subpart NNNNN, specifies initial compliance demonstration requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9030 (b)
This regulation, 40 CFR 63 Subpart NNNNN, specifies initial compliance demonstration requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9035 (b)
This regulation, 40 CFR 63 Subpart NNNNN, specifies continuous compliance monitoring and data collection requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9035 (d)
This regulation, 40 CFR 63 Subpart NNNNN, specifies continuous compliance monitoring and data collection requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9035 (e)
This regulation, 40 CFR 63 Subpart NNNNN, specifies continuous compliance monitoring and data collection requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.
from Hazardous Waste Combustors.

40 CFR 63.9040 (c)
This regulation, 40 CFR 63 Subpart NNNNN, specifies continuous compliance emission limits and work practice requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9045 (f)
This regulation, 40 CFR 63 Subpart NNNNN, specifies notification submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9045 (g)
This regulation, 40 CFR 63 Subpart NNNNN, specifies notification submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9050 (a)
This regulation, 40 CFR 63 Subpart NNNNN, specifies report submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9050 (b)
This regulation, 40 CFR 63 Subpart NNNNN, specifies report submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9050 (c)
This regulation, 40 CFR 63 Subpart NNNNN, specifies report submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9050 (d)
This regulation, 40 CFR 63 Subpart NNNNN, specifies report submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9050 (e)
This regulation, 40 CFR 63 Subpart NNNNN, specifies report submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.
40 CFR 63.9050 (f)
This regulation, 40 CFR 63 Subpart NNNNN, specifies report submittal requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9055
This regulation, 40 CFR 63 Subpart NNNNN, specifies records retention requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.9060
This regulation, 40 CFR 63 Subpart NNNNN, specifies records retention and format requirements for sources subject to National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors.

40 CFR 63.983 (a)
GMACT - Standards for closed vent systems - closed vent system equipment and operating requirements

40 CFR 63.983 (b)
GMACT - Standards for closed vent systems - closed vent system inspection requirements

40 CFR 63.983 (c)
GMACT - Requirements for closed vent systems - closed vent system inspection procedures

40 CFR 63.983 (d)
GMACT - Requirements for closed vent systems - closed vent system leak repair provisions

40 CFR 63.988 (a)
NESHAP For Closed Vent Systems, Control Devices, etc. - Incinerators, boilers, and process heaters equipment and operating
40 CFR 63.988 (b)
NESHAP For Closed Vent Systems, Control Devices, etc. - Incinerators, boilers, and process heaters - performance tests

40 CFR 63.990 (a)
NESHAP For Closed Vent Systems, Control Devices, etc. - Absorbers & Condensers as Control Devices - equipment and operation.

40 CFR 63.990 (b)
NESHAP For Closed Vent Systems, Control Devices, etc. - Absorbers & Condensers as Control Devices - performance testing

40 CFR 63.994 (a) (2)
This regulation, 40 CFR 63 Subpart SS, contains the requirements for halogen scrubbers and other halogen reduction devices on sources subject to a National Emissions Standard for Closed Vent Systems, Control Devices, Recovery Devices and Routing to a Fuel Gas System or a Process.

40 CFR 63.996
GMACT - General monitoring requirements for control and recovery devices

40 CFR 63.996 (d)
NESHAP for Closed Vent Systems & Control Devices - Alternatives to Monitoring Requirements

40 CFR 63.998 (a) (2)
Recordkeeping Requirements
40 CFR 63.998 (b)
Recordkeeping Requirements

40 CFR 63.998 (c)
Recordkeeping Requirements

40 CFR 63.998 (c) (1)
NESHAP for Closed Vent Systems & Control Devices - Recordkeeping Provisions - nonflare control & recovery device

40 CFR 63.998 (c) (2)
NESHAP for Closed Vent Systems & Control Devices - Recordkeeping Provisions - nonflare control device - combustion

40 CFR 63.998 (d) (1)
NESHAP for Closed Vent Systems & Control Devices - Recordkeeping Provisions - Closed Vent System Records

40 CFR Part 61, Subpart A
This regulation, 40 CFR 61 Subpart A, lists the general provisions that a facility subject to a National Emissions Standard for Hazardous Air Pollutant is subject to.

40 CFR Part 98
40 CFR Part 98 sets forth the reporting requirements for facilities that are subject to the mandatory reporting of greenhouse gases.

6 NYCRR 201-6.4 (f)
This section describes the operational flexibility protocol proposed by the facility. The protocol will allow the facility owner or operator to make certain changes at the facility without the need for a permit modification. Changes made pursuant to the protocol must be approved by the Department, and will be rolled into the permit during the next renewal or modification.

6 NYCRR 211.1
This regulation requires that no person shall cause or allow emissions of air contaminants to the outdoor atmosphere of such quantity, characteristic or duration which are injurious to human, plant or animal life or to property, or which unreasonably interfere with the comfortable enjoyment of life or property.

6 NYCRR 212-1.3
Based upon the following requirements, all air contaminants will assigned an Environmental Rating from A to D.

(a) Toxic and other properties and emission rate potential of the air contaminant;
(b) location of the process emission source or emission point(s) for the air contaminant with respect to residences or other sensitive environmental receptors, taking into account the area's anticipated growth;
(c) emission dispersion characteristics at or near the process emission source or emission point(s), taking into account the physical location of the process emission source or emission point(s) relative to the surrounding buildings and terrain; and
(d) the projected maximum cumulative impact of an air contaminant taking into account emissions from all process emission sources at the facility under review and the pre-existing ambient concentration of the air contaminant under review.

6 NYCRR 212-1.6 (a)
This provisions requires that the facility owner or operator not cause or allow emissions having an average opacity during any six consecutive minutes of 20 percent or greater from any process emission source or emission point, except for the emission of uncombined water.

6 NYCRR 212-2.1
Emissions of air contaminants to the outdoor atmosphere from any process emission source or emission point are restricted as follows:
(a) For an air contaminant listed in section 212-2.2 table 2 – high toxicity air contaminant list, of this Subpart, the facility owner or operator shall either limit the actual annual emissions from all process operations at the facility so as to not exceed the mass emission limit listed for the individual HTAC; or demonstrate compliance with the air cleaning requirements for the HTAC as specified in subdivision 212-2.3(b), table 4 – degree of air cleaning required for non-criteria air contaminants, of this Subpart for the environmental rating assigned to the contaminant by the department.
(b) For any air contaminant not listed on table 2, unless it is a solid particulate described in subdivision (c) of this section, the facility owner or operator shall not allow emissions of an air contaminant to violate the requirements specified in subdivision 212-2.3(a), table 3 – degree of air cleaning required for criteria air contaminants of this Subpart, or
subdivision 212-2.3(b), table 4 – degree of air cleaning required for non-criteria air contaminants of this Subpart, as applicable, for the environmental rating assigned to the contaminant by the department.

(c) For a solid particulate assigned an environmental rating of B or C emitted from a process emission source, the facility owner or operator shall not allow emissions of particulate to exceed the requirements specified in section 212-2.4 of this Subpart.

6 NYCRR 212-2.4 (b)
Particulate emissions from any process emission source, which received a B or C Environmental Rating, and for which an application was received by the department after July 1, 1973 are restricted to 0.050 grains per cubic foot of exhaust gas, expressed at standard conditions on a dry gas basis.

6 NYCRR 212-3.1 (a) (2)
This provision states that owners and/or operators of facilities located outside of the the Lower Orange County towns of Blooming Grove, Chester, Highlands, Monroe, Tuxedo, Warwick, and Woodbury or New York City metropolitan area with an annual potential to emit of 100 tons or more of NOx or 50 tons or more of VOCs must comply with the requirements of this section.

6 NYCRR 212-3.1 (c) (4) (i)
This provision states that owners and/or operators of emission points subject to Part 212-3 operating prior to October 20, 1994 must submit a compliance plan to the department. The compliance plan must demonstrate that the VOC emission points are equipped with a capture system and a control device with an overall removal efficiency of at least 81 percent.

6 NYCRR 212-3.1 (c) (4) (iii)
This provision states that if owners and/or operators can show to the satisfaction of the department that an emission point cannot achieve an overall removal efficiency of 81 percent or use coatings not exceeding 3.5 pounds VOC per gallon as applied (minus water and excluded VOC) for reasons of technological or economic feasibility, the department may accept a lesser degree of control upon submission of satisfactory evidence that the facility owner or operator will apply reasonably available control technology.
6 NYCRR 225-1.2 (f)
Sulfur-in-fuel limitations for the purchase of #2 heating oil on or after July 1, 2012.

6 NYCRR 225-1.2 (g)
Sulfur-in-fuel limitations for the purchase of distillate oil on or after July 1, 2014.

6 NYCRR 225-1.2 (h)
Sulfur-in-fuel limitation for the firing of distillate oil on or after July 1, 2016.

6 NYCRR 227-1.3 (a)
This regulation prohibits any person from operating a stationary combustion installation which emits smoke equal to or greater than 20% opacity except for one six-minute period per hour of not more than 27% opacity.

6 NYCRR 227-2.4 (a) (1)
NOx emission limits for very large boilers.

6 NYCRR 227-2.4 (b) (1)
NOx emission limits for large boilers.

6 NYCRR 227-2.4 (c) (1)
Presumptive NOx RACT emission limits for mid-size boilers.

6 NYCRR 227-2.6
This regulation establishes the compliance testing, monitoring, and reporting requirements for NOx RACT affected stationary combustion installations.

6 NYCRR 229.3 (e) (2) (iv)
This section requires a tank with submerged fill for storage of volatile organic liquids

6 NYCRR 229.3 (e) (2) (v)
This section requires the tank to be equipped with conservation vents for storage of volatile organic liquids
liquids.

6 NYCRR 229.5 (d) This section requires facilities subject to the requirements under Part 229.3, to maintain a record of the capacity of the volatile organic liquid storage tanks, in gallons, for a period of 5 years.

6 NYCRR 231-2.6 The provisions of Subpart 231-2 apply to new or modified major facilities. The contaminants of concern state-wide are nitrogen oxides and volatile organic compounds since New York State is located in the ozone transport region and because there are ozone non-attainment areas within the state. In the New York City metropolitan area, carbon monoxide is also a non-attainment contaminant. In addition, particulate matter less than 10 microns in size (PM-10) is a non-attainment contaminant in Manhattan County.

The requirements and criteria for creating and certifying emission reduction credits (ERCs) are set forth in section 231-2.6.

6 NYCRR Part 226 This regulation specifies the general requirements, equipment specifications and operating requirements for open-top vapor, conveyorized and cold cleaning degreasers.

6 NYCRR Subpart 201-7 This regulation sets forth an emission cap that cannot be exceeded by the facility. In this permit that cap is

Compliance Certification
Summary of monitoring activities at MOMENTIVE PERFORMANCE MATERIALS:

<table>
<thead>
<tr>
<th>Location</th>
<th>Cond No.</th>
<th>Type of Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>79</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>80</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>81</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>75</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>76</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>77</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>78</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>82</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>83</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>84</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>85</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>86</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>87</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>88</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>89</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>90</td>
<td>intermittent emission testing</td>
</tr>
<tr>
<td>FACILITY</td>
<td>91</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>92</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 93</td>
<td>intermittent emission testing</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>FACILITY 99</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 100</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 101</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 198</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 257</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 258</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 259</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 260</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 261</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 262</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 263</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 264</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 265</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 266</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 267</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 268</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 269</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 270</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 271</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 272</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 273</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 274</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 275</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 276</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 277</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 278</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 279</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 280</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 281</td>
<td>record keeping/maintenance procedures</td>
<td></td>
</tr>
<tr>
<td>FACILITY 282</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 283</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 284</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 285</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 286</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 287</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 288</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 289</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 290</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 291</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 292</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 293</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 294</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 295</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY 296</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
</tr>
<tr>
<td>FACILITY</td>
<td>297</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>298</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>299</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>300</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>301</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>302</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>303</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>304</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>305</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>306</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>307</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>308</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>309</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>310</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>311</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>312</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>313</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>314</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>315</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>316</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>317</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>318</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>319</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>320</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>321</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>322</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>323</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>324</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>325</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>326</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>327</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>328</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>329</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY</td>
<td>330</td>
<td>monitoring of process or control device parameters</td>
</tr>
</tbody>
</table>
FACILITY 331 monitoring of process or control device parameters as surrogate
FACILITY 332 monitoring of process or control device parameters as surrogate
FACILITY 333 monitoring of process or control device parameters as surrogate
FACILITY 334 monitoring of process or control device parameters as surrogate
FACILITY 335 monitoring of process or control device parameters as surrogate
FACILITY 336 monitoring of process or control device parameters as surrogate
FACILITY 337 monitoring of process or control device parameters as surrogate
FACILITY 338 monitoring of process or control device parameters as surrogate
FACILITY 339 monitoring of process or control device parameters as surrogate
FACILITY 340 monitoring of process or control device parameters as surrogate
FACILITY 341 monitoring of process or control device parameters as surrogate
FACILITY 342 monitoring of process or control device parameters as surrogate
FACILITY 343 monitoring of process or control device parameters as surrogate
FACILITY 344 monitoring of process or control device parameters as surrogate
FACILITY 345 monitoring of process or control device parameters as surrogate
FACILITY 346 monitoring of process or control device parameters as surrogate
FACILITY 347 monitoring of process or control device parameters as surrogate
FACILITY 348 monitoring of process or control device parameters as surrogate
FACILITY 349 monitoring of process or control device parameters as surrogate
FACILITY 350 monitoring of process or control device parameters as surrogate
FACILITY 351 monitoring of process or control device parameters as surrogate
FACILITY 352 monitoring of process or control device parameters as surrogate
FACILITY 353 monitoring of process or control device parameters as surrogate
FACILITY 354 monitoring of process or control device parameters as surrogate
FACILITY 355 monitoring of process or control device parameters as surrogate
FACILITY 356 monitoring of process or control device parameters as surrogate
FACILITY 357 monitoring of process or control device parameters as surrogate
FACILITY 358 monitoring of process or control device parameters as surrogate
FACILITY 359 monitoring of process or control device parameters as surrogate
FACILITY 360 monitoring of process or control device parameters as surrogate
FACILITY 361 monitoring of process or control device parameters as surrogate
FACILITY 362 monitoring of process or control device parameters as surrogate
FACILITY 363 monitoring of process or control device parameters as surrogate
FACILITY 364 monitoring of process or control device parameters as surrogate
FACILITY 365 monitoring of process or control device parameters as surrogate
FACILITY 366 monitoring of process or control device parameters as surrogate
FACILITY 367 monitoring of process or control device parameters as surrogate
FACILITY 368 monitoring of process or control device parameters as surrogate
FACILITY 369 monitoring of process or control device parameters as surrogate
FACILITY 370 record keeping/maintenance procedures
FACILITY 371 record keeping/maintenance procedures
FACILITY 372 record keeping/maintenance procedures
FACILITY 373 record keeping/maintenance procedures
FACILITY 374 record keeping/maintenance procedures
FACILITY 375 record keeping/maintenance procedures
FACILITY 376 record keeping/maintenance procedures
FACILITY 377 record keeping/maintenance procedures
FACILITY 378 record keeping/maintenance procedures
FACILITY 379 record keeping/maintenance procedures
FACILITY 380 record keeping/maintenance procedures
FACILITY 381 record keeping/maintenance procedures
FACILITY 382 intermittent emission testing
FACILITY 383 intermittent emission testing
FACILITY 384 intermittent emission testing
FACILITY 385 intermittent emission testing
FACILITY 386 intermittent emission testing
FACILITY 387 intermittent emission testing
FACILITY 388 continuous emission monitoring (cem)
FACILITY 389 intermittent emission testing
FACILITY 390 record keeping/maintenance procedures
FACILITY 391 record keeping/maintenance procedures
FACILITY 392 record keeping/maintenance procedures
FACILITY 393 record keeping/maintenance procedures
FACILITY 394 record keeping/maintenance procedures
FACILITY 395 record keeping/maintenance procedures
FACILITY 396 record keeping/maintenance procedures
FACILITY 397 record keeping/maintenance procedures
FACILITY 398 record keeping/maintenance procedures
FACILITY 399 record keeping/maintenance procedures
FACILITY 400 record keeping/maintenance procedures
FACILITY 401 monitoring of process or control device parameters as surrogate
FACILITY 402 monitoring of process or control device parameters as surrogate
FACILITY 403 monitoring of process or control device parameters as surrogate
FACILITY 404 monitoring of process or control device parameters as surrogate
FACILITY 405 monitoring of process or control device parameters as surrogate
FACILITY 406 record keeping/maintenance procedures
FACILITY 407 monitoring of process or control device parameters
<table>
<thead>
<tr>
<th>FACILITY</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>408</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>409</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>410</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>411</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>412</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>413</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>414</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>415</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>416</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>417</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>418</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>419</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>420</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>421</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>422</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>423</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>424</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>425</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>426</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>108</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>109</td>
<td>intermittent emission testing</td>
</tr>
<tr>
<td>110</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>111</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>112</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>113</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>114</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>115</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>116</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>117</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>118</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>119</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>120</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>121</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>122</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>123</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>124</td>
<td>monitoring of process or control device parameters</td>
</tr>
<tr>
<td>125</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>126</td>
<td>intermittent emission testing</td>
</tr>
<tr>
<td>127</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>128</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>129</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY</td>
<td>Record Keeping/Maintenance Procedures</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>FACILITY 130</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 131</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 132</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 133</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 134</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 135</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 136</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 137</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 138</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 139</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 140</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 141</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 142</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 143</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 144</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 145</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 146</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 147</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 148</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 149</td>
<td>monitoring of process or control device parameters as surrogate</td>
</tr>
<tr>
<td>FACILITY 150</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 151</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 152</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 153</td>
<td>work practice involving specific operations</td>
</tr>
<tr>
<td>FACILITY 154</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 155</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 156</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 157</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 158</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 159</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 160</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 161</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 162</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 163</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 164</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 165</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 166</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 167</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 168</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 169</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 170</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 171</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 172</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 173</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 174</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 175</td>
<td>work practice involving specific operations</td>
</tr>
<tr>
<td>FACILITY 176</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 177</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 178</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 179</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 180</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 181</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 182</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 183</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 184</td>
<td>work practice involving specific operations</td>
</tr>
<tr>
<td>FACILITY 185</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 186</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 187</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 188</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 189</td>
<td>record keeping/maintenance procedures</td>
</tr>
<tr>
<td>FACILITY 190</td>
<td>record keeping/maintenance procedures</td>
</tr>
</tbody>
</table>
FACILITY 191 record keeping/maintenance procedures
FACILITY 192 record keeping/maintenance procedures
FACILITY 193 record keeping/maintenance procedures
FACILITY 194 record keeping/maintenance procedures
FACILITY 195 record keeping/maintenance procedures
FACILITY 196 record keeping/maintenance procedures
FACILITY 197 record keeping/maintenance procedures
FACILITY 428 record keeping/maintenance procedures
FACILITY 429 record keeping/maintenance procedures
FACILITY 430 monitoring of process or control device parameters as surrogate
FACILITY 431 monitoring of process or control device parameters as surrogate
FACILITY 432 record keeping/maintenance procedures
FACILITY 433 record keeping/maintenance procedures
FACILITY 434 record keeping/maintenance procedures
FACILITY 435 record keeping/maintenance procedures
FACILITY 436 record keeping/maintenance procedures
FACILITY 437 record keeping/maintenance procedures
FACILITY 438 record keeping/maintenance procedures
FACILITY 439 record keeping/maintenance procedures
FACILITY 440 record keeping/maintenance procedures
FACILITY 441 record keeping/maintenance procedures
FACILITY 442 record keeping/maintenance procedures
FACILITY 443 record keeping/maintenance procedures
FACILITY 444 record keeping/maintenance procedures
FACILITY 445 record keeping/maintenance procedures
FACILITY 446 record keeping/maintenance procedures
FACILITY 447 record keeping/maintenance procedures
FACILITY 448 record keeping/maintenance procedures
FACILITY 449 record keeping/maintenance procedures
FACILITY 450 record keeping/maintenance procedures
FACILITY 451 record keeping/maintenance procedures
FACILITY 452 record keeping/maintenance procedures
FACILITY 453 record keeping/maintenance procedures
FACILITY 454 record keeping/maintenance procedures
FACILITY 455 record keeping/maintenance procedures
FACILITY 456 record keeping/maintenance procedures
FACILITY 199 record keeping/maintenance procedures
FACILITY 200 record keeping/maintenance procedures
FACILITY 201 record keeping/maintenance procedures
FACILITY 202 record keeping/maintenance procedures
FACILITY 203 record keeping/maintenance procedures
FACILITY 204 record keeping/maintenance procedures
FACILITY 205 record keeping/maintenance procedures
FACILITY 206 record keeping/maintenance procedures
FACILITY 207 record keeping/maintenance procedures
FACILITY 208 record keeping/maintenance procedures
FACILITY 209 record keeping/maintenance procedures
FACILITY 210 record keeping/maintenance procedures
FACILITY 211 record keeping/maintenance procedures
FACILITY 212 record keeping/maintenance procedures
FACILITY 213 record keeping/maintenance procedures
FACILITY 214 record keeping/maintenance procedures
FACILITY 215 record keeping/maintenance procedures
FACILITY 216 record keeping/maintenance procedures
FACILITY 217 record keeping/maintenance procedures
FACILITY 218 record keeping/maintenance procedures
FACILITY 219 record keeping/maintenance procedures
FACILITY 220 record keeping/maintenance procedures
FACILITY 221 record keeping/maintenance procedures
FACILITY 222 record keeping/maintenance procedures
FACILITY 223 record keeping/maintenance procedures
FACILITY 224 record keeping/maintenance procedures
<table>
<thead>
<tr>
<th>FACILITY</th>
<th>Record Keeping/Maintenance Procedures</th>
<th>Work Practice Involving Specific Operations</th>
<th>Monitoring of Process or Control Device Parameters as Surrogate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY 225</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 226</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 227</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 228</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 229</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 230</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 231</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 232</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 233</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 234</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 235</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 236</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 237</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 238</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 239</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 240</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 241</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 242</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 243</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 244</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 245</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 246</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 247</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 248</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 249</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 250</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 251</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 252</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 253</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 254</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 255</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 256</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 257</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 258</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 259</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 260</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 21</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 5</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 6</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 24</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 25</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 26</td>
<td>work practice involving specific operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 27</td>
<td>work practice involving specific operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 7</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 29</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 30</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 31</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 475</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 476</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 477</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 478</td>
<td>record keeping/maintenance procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 479</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 480</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 481</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 482</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 483</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITY 484</td>
<td>monitoring of process or control device parameters as surrogate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FACILITY 485 monitoring of process or control device parameters as surrogate
FACILITY 486 monitoring of process or control device parameters as surrogate
FACILITY 487 monitoring of process or control device parameters as surrogate
FACILITY 488 monitoring of process or control device parameters as surrogate
FACILITY 489 monitoring of process or control device parameters as surrogate
FACILITY 490 monitoring of process or control device parameters as surrogate
FACILITY 491 monitoring of process or control device parameters as surrogate
FACILITY 492 monitoring of process or control device parameters as surrogate
FACILITY 493 monitoring of process or control device parameters as surrogate
FACILITY 494 monitoring of process or control device parameters as surrogate
FACILITY 32 monitoring of process or control device parameters as surrogate
FACILITY 33 record keeping/maintenance procedures
FACILITY 34 monitoring of process or control device parameters as surrogate
FACILITY 35 record keeping/maintenance procedures
FACILITY 36 monitoring of process or control device parameters as surrogate
FACILITY 37 monitoring of process or control device parameters as surrogate
FACILITY 38 monitoring of process or control device parameters as surrogate
FACILITY 39 monitoring of process or control device parameters as surrogate
FACILITY 40 monitoring of process or control device parameters as surrogate
FACILITY 41 record keeping/maintenance procedures
FACILITY 42 monitoring of process or control device parameters as surrogate
FACILITY 43 monitoring of process or control device parameters as surrogate
FACILITY 44 monitoring of process or control device parameters as surrogate
FACILITY 45 record keeping/maintenance procedures
FACILITY 46 record keeping/maintenance procedures
FACILITY 47 monitoring of process or control device parameters as surrogate
FACILITY 48 record keeping/maintenance procedures
FACILITY 49 record keeping/maintenance procedures
FACILITY 50 monitoring of process or control device parameters as surrogate
FACILITY 51 monitoring of process or control device parameters as surrogate
FACILITY 52 record keeping/maintenance procedures
FACILITY 53 record keeping/maintenance procedures
FACILITY 54 record keeping/maintenance procedures
FACILITY 55 work practice involving specific operations
FACILITY 56 work practice involving specific operations
FACILITY 57 work practice involving specific operations
FACILITY 58 record keeping/maintenance procedures
FACILITY 59 monitoring of process or control device parameters as surrogate
FACILITY 60 record keeping/maintenance procedures
FACILITY 61 record keeping/maintenance procedures
Basis for Monitoring

Expired Condition #35 from the prior Title V Permit was a PSD condition capping emissions of Particulate Matter (PM) to less than 62.5 tons per year. A thorough review of potential emissions from this source revealed that its’ potential to emit PM is actually less than 50 tons per year and that no PSD cap is required.

Expired Conditions from the prior Title V Permit include PSD capping condition #s 28, 29, 30, 31, 33, 34 and part of 32 (the SO2 cap in this condition has been expired). These caps have been removed as a result of MPM’s decision to no longer have the option to burn fuel oil #s 2 and 6. The affected boilers are now only permitted to burn natural gas. As a result of this change, the potential to emit the affected contaminant has dropped to below the respective caps and the conditions are no longer necessary.

Condition 25: 6 NYCRR Subpart 201-7
This monitoring condition limits the emission of oxides of Particulate Matter (PM) and Particulate Matter less than 10 microns (PM-10) from emission units U-28002 & U-28003 to less than 15.5 tons per year rolled on a monthly basis in order to not be subject to the requirements of the New Source Review for Attainment contaminants under 6 NYCRR Part 231. The facility is required to maintain monthly records and to submit a semi-annual reports verifying compliance with the limit.

Condition 26: 6 NYCRR Subpart 201-7
This monitoring condition limits the emission of oxides of nitrogen contaminants (NOx) from emission unit U-28002 to less than 143 tons per year rolled on a monthly basis in order to not be subject to the requirements of the New Source Review for Non-Attainment contaminants under 6 NYCRR Part 231. The facility is required to maintain monthly records and to submit a semi-annual reports verifying compliance with the limit.

Condition 27: 6 NYCRR Subpart 201-7
This monitoring condition limits the combined emissions of oxides of nitrogen (NOx) from the two emission units U-28002 & U-28003 to less than 223.5 tons per year rolled on a monthly basis in order to not be subject to the requirements of the New Source Review for Non-Attainment contaminants under 6 NYCRR Part 231. Fuel usage is monitored to assure compliance with this requirement. The facility is required to maintain monthly records and to submit a semi-annual reports verifying compliance with the limit.

Condition 30: 6 NYCRR 212-1.3
An initial “Environmental Rating” has been assigned to each contaminant emitted at MPM based upon toxicity criteria and facility wide emissions of each. This rating will be used in the Part 212 review process,
both under the op-flex provisions in the permit and any permit modification requests. These initial "Environmental Rating" have been assigned as follows:

CAS No: 000075-65-0
Name: 2-METHYL-2-PROPANOL Rating = B

CAS No: 0NY502-00-0
Name: 40 CFR 60-63 - TOTAL ORGANIC COMPOUNDS (TOC) Rating = B

CAS No: 000064-19-7
Name: ACETIC ACID Rating = B

CAS No: 000075-36-5
Name: ACETYL CHLORIDE Rating = B

CAS No: 007664-41-7
Name: AMMONIA Rating = B

CAS No: 007782-50-5
Name: CHLORINE Rating = A

CAS No: 000067-64-1
Name: DIMETHYL KETONE Rating = C

CAS No: 000075-78-5
Name: DIMETHYLDICHOROSILANE C2H6CL2SI Rating = A

CAS No: 000064-17-5
Name: ETHYL ALCOHOL (ETHANOL) Rating = B

CAS No: 000100-41-4
Name: ETHYL BENZENE Rating = B

CAS No: 000541-05-9
Name: HEXAMETHYLCYCLOTRISILOXANE Rating = C

CAS No: 000107-46-0
Name: HEXAMETHYLDISILOXANE Rating = C

CAS No: 007647-01-0
Name: HYDROGEN CHLORIDE Rating = A

CAS No: 000067-63-0
Name: ISOPROPYL ALCOHOL Rating = C

CAS No: 000067-56-1
Name: METHYL ALCOHOL Rating = B

CAS No: 000074-87-3
Name: METHYL CHLORIDE Rating = B

CAS No: 000075-79-6
Name: METHYLTRICHLOROSILANE CH3Cl3SI Rating = A

CAS No: 001185-55-3
Name: METHYLTRIMETHOXYSILANE C4H12O3SI Rating = B

CAS No: 000556-67-2
Name: OCTAMETHYLCYCLOTETRA SILOXANE Rating = C

CAS No: 0NY210-00-0
Name: OXIDES OF NITROGEN Rating = B

CAS No: 0NY075-00-0
Name: PARTICULATES Rating = C

CAS No: 0NY075-00-5
Name: PM-10 Rating = C

CAS No: 068479-14-1
Name: SILANE, CHLORO METHYL DERIVS Rating = B

CAS No: 001719-58-0
Name: SILANE, CHLOROETHENYLDIMETHYL Rating = B
Condition 31: 6 NYCRR 212-1.6 (a)
Process sources at this facility which have particulate emissions and are subject to Part 212-1.6(a) are monitored once per shift during daylight hours for visible emission. If any emissions above normal are observed, it is reported the Environmental, Health and Safety person and a Method 9 Opacity observation is performed within 2 days. Any violations of the 20% standard are reported, they are reported to the Department of Environmental Conservation within two day of the first observation of the matter. The report is to include a description of the malfunction, corrective action taken, identification of the air contaminant and estimates of the emission rates. Records are to be maintained on site for five years.

Condition 32: 6 NYCRR 212-2.4 (b)
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L06
Applicable sources are monitored per the requirements of condition #30 above. If opacity exceeds 20% more than once per 12 month period, then stack testing for particulate emissions must be performed within 30 days of approval of a protocol. The protocol must be submitted within 30 days of this second occurrence of high opacity. The applicable requirement is 0.05 grains per dry standard cubic feet of exhaust gas. Reporting on compliance with this requirement is due on a calendar quarterly basis.

Condition 33: 6 NYCRR 212-3.1 (a) (2)
The Compliance Certification applies to:
Emission Unit: F-INISH Emission Points: 32040, 32042, 32044, 32049 & 32050
These emission points are from the Doughmixer (#s 5, 6, 7, 8 & 9) exhausts
The regulated contaminant is VOC (CAS No: 0NY998-00-0)
The facility will record when Grades produced at these sources have the potential to emit greater than 3 pounds per hour and will vent these emissions to a condenser during cook steps. This will assure meeting the required 81% control. Monitoring is per batch and reports are submitted semi-annually on a calendar year basis.
Condition 34: 6 NYCRR 212-3.1 (a) (2)
The Compliance Certification applies to:
Emission Unit: F-INISH Emission Point: 32006
The regulated contaminant is VOC (CAS No: 0NY998-00-0)
Grades produced in Doughmixer #3 will be recorded. Doughmixer #3 will not process any condenser grades with a volatile organic contaminant emission rate potential of greater than 3 lb/hr). Monitoring is per batch and reporting is semi-annually on a calendar year basis.

Condition 35: 6 NYCRR 212-3.1 (a) (2)
The Compliance Certification applies to:
Emission Unit: C-27018 Emission Points: 62005, 62011, 76001, 76710 & 76711
Emission Unit: F-INISH Emission Point: 24944
Where a source owner can demonstrate to the satisfaction of the commissioner that he will apply best available control technology (BACT), the commissioner may specify a less restrictive permissible emission rate, emission standard or degree of air cleaning for such source than required under this Part provided that the less restrictive requirement is equivalent to that which can be achieved through the application of BACT. The Commissioner has accepted the level of control proposed by MPM as BACT and a State Implementation Plan (SIP) revision requests was sent to EPA during previous permitting of the affected. These evaluations have been reviewed again with this renewal application with the same determination of acceptability. Sources are re-evaluated once every five years upon permit renewal.

Condition 36: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to:
Emission Unit: C-27018 Emission Point: 76001
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
The lower limit of monitoring ensures compliance with all process batch operations. Engineering calculations will be used as evidence of compliance with contaminant control efficiency when the measured flow rate falls below 72 gallons per minute. The flow is measured on a 24 hour average basis. Reporting is required semi-annually on a calendar year basis.

Condition 37: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to:
Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Spray tower flow rate will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations. Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured flow rate falls below 6 gallons per minute. The flow is measured on a 24 hour average basis. Reporting is required semi-annually on a calendar year basis.

Condition 38: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to:
Emission Unit: F-INISH Emission Point: 32028
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
The lower limit of monitoring ensures compliance with all process batch operations. Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured flow rate falls below 10 gallons per minute. The flow is measured on a 24 hour average basis. Reporting is required semi-annually on a calendar year basis.

Condition 39: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to:
Emission Unit: C-27018 Process: 401 Emission Source: MCSVI
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

The fire box temperature in (ES-MCSVI) is monitored to ensure sufficient control efficiency. The lower allowable limit is 1750 degrees Fahrenheit. The temperature is monitored continuously and averaged on a 24 hour basis. Reporting is required semi-annually on a calendar year basis.

Condition 40: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 23002
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Water flow to the first stage of the scrubber will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations. Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured flow rate falls below 20 gallons per minute. The flow is monitored continuously and averaged on a 24 hour basis. Reporting is semi-annually on a calendar year basis.

Condition 41: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification activity will be performed for the Facility.
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Volatile organic compound (VOC) emission points which are equipped with a capture system and a control device with an overall removal efficiency of at least 81% are equipped with reasonably available control technology. VOC emission control efficiencies will be calculated, per the op-flex plan (condition #24), for any new product grades to assure a minimum 81% control. The control devices for the effected processes have been determined to achieve an overall removal efficiency of 81% provided the operating parameters specified in this permit are met. Monitoring is “As required – see permit monitoring description” and reporting is semi-annual on a calendar year basis.

Condition 42: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to:
Emission Unit: F-INISH Emission Points: 32040, 32042, 32044, 32049 & 32050
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Each condenser’s outlet gas temperature will be monitored when the ERP of VOCs exceed 3 lb/hr. This process emits through five emission points 32040, 32042, 32044, 32049 and 32050. Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured temperature rises above 35 degrees Centigrade. Reporting is semi-annually on a calendar year basis.

Condition 43: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 85008
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Outlet temperature of condensing column 85TST will be monitored to ensure sufficient control efficiency. The lower limit of monitoring (75 degrees Centigrade) ensures compliance with all process batch operations. Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured temperature exceeds the limit of monitoring. The temperature is measured continuously and averaged on a 24 hour basis. Reporting is semi-annually on a calendar year basis.

Condition 44: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 31037
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Water flow to the scrubber will be monitored to ensure sufficient control efficiency Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured flow rate falls below 5 gallons per minute. The flow is monitored continuously and averaged on a 24 hour basis. Reporting is semi-annually on a calendar year basis.
Condition 45: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: C-27018 Process: 715 Emission Source: MTCSS
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Temperature of the water flow to the Building 24 Mon MACT scrubber (MTCSS) is recorded in Provox Pi to ensure adequate conditioning of the air stream prior to routing to the incinerators for actual control. As long as water temperature remains at or below 30 degrees celcius during process operation, this condition is met. This scrubber is for pre-conditioning, not control, of emissions for Process 715. This process emits to the RKI or the FBI (process 422 or 424). Monitoring is continuous and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 46: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 71013
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Water flow to the scrubber is recorded in Provox/Pi to ensure sufficient control efficiency. As long as water flow exists during process operation, this condition is met. Monitoring is on a per batch basis. Reports are required semi-annually on a calendar year basis.

Condition 47: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Water flow rate to the scrubber will be monitored to meet required control efficiency. The lower limit of monitoring ensures compliance with all process operations. Engineering calculations will be used as evidence of compliance with VOC control efficiency when the measured flow rate falls below 20 gallons per minute. Flow in monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 48: 6 NYCRR 212-3.1 (c) (4) (i)
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 71013
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Water flow to the scrubber is recorded (on/off) to ensure Air Pollution Control Permit Conditions sufficient control efficiency. The monitoring is per batch. Reports are required semi-annually on a calendar year basis.

Condition 49: 6 NYCRR 212-3.1 (c) (4) (iii)
The Compliance Certification applies to: Emission Unit: C-27018 Emission Points: 62005 & 62011
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
The MCS vent scrubber will be operated so that Methyl Chloride emissions do not exceed those which make it economically feasible to install control as evaluated in the economic analysis dated 8/8/12 (18.7 tons/yr). This monitoring condition also meets the best available control technology (BACT) requirements of 6 NYCRR 212-1.5(d). Methyl Chloride emissions are totaled on a monthly basis and summed up for the past 12 month period to assure they don’t exceed 18.7 tons. Reporting is required semi-annually on a calendar year basis.

Condition 50: 6 NYCRR 212-3.1 (c) (4) (iii)
The Compliance Certification applies to:
Emission Unit: W-97004 Emission Points: 97004, 97005, 97011, 97012, 97017, 97020 & 97021
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Calculate VOC emissions to confirm that emissions do not exceed those which make it economically feasible to install control (3.7 tons per year) as evaluated in the economic analysis dated 8/8/12. VOCs are summed monthly for the past 12 month period to assure they do not exceed 3.7 tons. Reports are required semi-annually on a calendar year basis.
Condition 51: 6 NYCRR 212-3.1 (c) (4) (iii)
The Compliance Certification applies to:
Emission Unit: C-27018 Emission Points: 76710 & 76711
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
High acid scrubber water flow will be monitored to ensure sufficient control efficiency. The lower limit of monitoring (40 gallons per minute) has been accepted by the department as both reasonably available control technology (RACT) and best available control technology (BACT). This has been submitted to USEPA for approval as a revision to the NYS state implementation plan (SIP). Flow is monitored continuously and averaged over 24 hours. Reporting is required semi-annually on a calendar year basis.

Condition 52: 6 NYCRR 212-3.1 (c) (4) (iii)
The Compliance Certification applies to:
Emission Unit: F-INISH Emission Points: 32040, 32042, 32044, 32049 & 32050
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Calculate VOC emissions to confirm that emissions do not exceed 3.7 tons per year which would make it economically feasible to install control as evaluated in the economic analysis dated 8/8/12. This process specific reasonably available control technology (RACT) demonstration is acceptable to the department and has been submitted to the US Environmental Protection Agency for approval as a revision to the State Implementation Plan. VOC emissions are summed monthly for the last 12 month period. Reports are required semi-annually on a calendar year basis.

Condition 63: 6 NYCRR 227-2.4 (c) (1)
The Compliance Certification activity will be performed for the facility:
The Compliance Certification applies to:
Emission Unit: U-28003 Process: 416
Emission Unit: U-28003 Process: 417
Regulated Contaminant(s): CAS No: 0NY210-00-0 OXIDES OF NITROGEN
This condition applies to natural gas only fired mid-size boilers. The owner or operator shall submit a testing protocol to the Department for approval a minimum of 30 days prior to any stack testing. The applicable emission limit prior to July 1, 2014 is 0.10 lb(NOx)/mmBTU. On and after July 1, 2014, MPM's NOx RACT analyses indicates that no additional control meets RACT. Therefore; RACT is established based upon previous stack test results which indicate emissions of 0.082 lb(NOx)/mmBTU from boiler #16 and 0.087 lb(NOx)/mmBTU from boiler #17. This RACT analysis shall be updated once per permit term based upon stack testing at the same frequency. Owners or operators required to use 40 CFR Part 75 monitoring reference methods are required to do so. Any other owners or operators may use either 40 CFR Part 60 or 40 CFR Part 75 monitoring reference methods. The owner or operator will maintain records on-site for a minimum of five years.

Condition 66: 6 NYCRR 229.3 (e) (2) (iv)
The Compliance Certification applies to:
Emission Unit: C-27018 Process: 748 Emission Source: 62T59
Emission Unit: C-27018 Process: 748 Emission Source: 62TBA
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC
Storage tanks subject to this requirement, with a capacity greater than or equal to 10,000 gallons but less than 20,000 gallons must be equipped with submerged fill. The tank has submerged fill, but there are major safety issues with opening it for an annual inspection as would normally be required. Emissions from this tank are also controlled by an additional 99.9+% via the scrubbers to emission points 62005 and 62011. Therefore, no monitoring is necessary for this source.

Condition 67: 6 NYCRR 229.3 (e) (2) (iv)
The Compliance Certification applies to:
Emission Unit: E-LISTS Process: L10 Emission Source: L0001
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Storage tanks subject to this requirement, with a capacity greater than or equal to 10,000 gallons but less than 20,000 gallons must be equipped with submerged fill. In this case, the equivalent control requirement has been met with a combination of submerged fill plus the hazardous waste incinerators (EPs 97001, 97002, 97003). The incinerator efficiencies alone is over 99% more effective than the submerged fill alone. No additional monitoring is necessary.

Condition 68: 6 NYCRR 229.3 (e) (2) (v)
The Compliance Certification applies to:
Emission Unit: C-27018 Process: 766 Emission Source: 76ACW
Emission Unit: C-27018 Process: 788 Emission Source: 23APS
Emission Unit: E-LISTS Process: L09
Emission Unit: F-INISH Process: 778 Emission Source: 37APS
Emission Unit: F-INISH Process: 781 Emission Source: 37APS
Emission Unit: W-97004 Process: 705 Emission Source: 97NEU
Emission Unit: W-97004 Process: 705 Emission Source: 97NTK
Emission Unit: W-97004 Process: 705 Emission Source: 97SEP
Emission Unit: W-97004 Process: 705 Emission Source: NPSST
Regulated Contaminant(s): CAS No: 0NY998-00-0 VOC

Storage tanks subject to this requirement, with a capacity of less than 10,000 gallons must be equipped with a conservation vent. In the case of Process L09, the equivalent control requirement has been met with a combination of submerged fill plus the hazardous waste incinerators (EPs 97001, 97002, 97003). The incinerators efficiencies are 99.9+% for VOCs, which is greater than a conservation vent. No additional monitoring is necessary.

Condition 70: 6 NYCRR 231-2.6
The Compliance Certification applies to: Emission Unit: U-28003 Emission Point: 28003
Regulated Contaminant(s): CAS No: 0NY210-00-0 OXIDES OF NITROGEN

Emissions of NOx is limited to 77 tpy for emission source BLR14 (Boiler #14) in order to establish ERCs on an annual-rolled monthly basis. Fuel usage will be recorded and NOx calculated as 0.08 lb/mmBTU on natural gas. Emissions are summed monthly for the past 12 month period to assure compliance with this limit. Reports are required semi-annually on a calendar year basis.

Condition 71: 6 NYCRR 231-2.6
The Compliance Certification applies to: Emission Unit: U-28002 Emission Point: 28002
Regulated Contaminant(s): CAS No: 0NY210-00-0 OXIDES OF NITROGEN

Emissions of NOx is limited to 62 tpy for emission source BLR13 (Boiler #13) in order to establish ERCs on an annual-rolled monthly basis. Fuel usage will be recorded and NOx calculated as 0.08 lb/mmBTU on natural gas. Emissions are summed monthly for the past 12 month period to assure compliance with this limit. Reports are required semi-annually on a calendar year basis.

Condition 72: 6 NYCRR 231-2.6
The Compliance Certification applies to: Emission Unit: U-28003 Emission Point: 28003
Regulated Contaminant(s): CAS No: 0NY210-00-0 OXIDES OF NITROGEN

Emissions of NOx is limited to 20 tpy for emission source BLR15 (Boiler #15) in order to establish ERCs on an annual-rolled monthly basis. Fuel usage will be recorded and NOx calculated as 0.26 lb/mmBTU on oil and 0.06 lb/mmBTU on natural gas. Emissions are summed monthly for the past 12 month period to assure compliance with this limit. Reports are required semi-annually on a calendar year basis.
Condition 73: 6 NYCRR 231-2.6
The Compliance Certification applies to:
Emission Unit: U-28002 Emission Point: 28006
Regulated Contaminant(s): CAS No: 0NY210-00-0 OXIDES OF NITROGEN
Emissions of NOx is limited to 128.5 tpy for emission source BLR18 (Boiler #18) in order to establish ERCs on an annual-rolled monthly basis. Emission are calculated by fuel use data and CEM system for NOx. Emissions are summed monthly for the past 12 month period to assure compliance with this limit. Reports are required semi-annually on a calendar year basis.

Condition 93: 40CFR 60.702(a), NSPS Subpart RRR
The Compliance Certification applies to:
Emission Unit: C-27018 Process: 098 Emission Source: 64RDD
Regulated Contaminant(s):
CAS No: 0NY502-00-0 40 CFR 60-63 - TOTAL ORGANIC COMPOUNDS (TOC)
The permittee shall reduce emissions of TOC (less methane and ethane) by 98 weight-percent, or to a TOC (less methane and ethane) concentration of 20 ppmv, on a dry basis corrected to 3 percent oxygen, whichever is less stringent. The new redistribution reactor (ES 64RDD) meets the NSPS Subpart RRR requirements by routing the vents to the site's hazardous waste incinicators, which has a 99.99% VOC destruction requirement. Compliance with the temperature requirements for the RKI and Fixed Box Incinerator meets the requirements of NSPS Subpart RRR. The vent line to the incinerators does not have a bypass, so the vent flow requirements do not apply.

Condition 105: 40CFR 63.104, Subpart F
The Compliance Certification applies to:
Emission Unit: C-27018 Process: 406
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP The cooling water shall be monitored for total HAPs, total VOCs, TOC, one or more speciated HAPs, or any other representative substances that would indicate the presence of a leak. The cooling water shall be monitored monthly for the first six months and quarterly thereafter. The concentration of the monitored parameter can be measured using any method listed in 40 CFR Part 136 with the ability to measure as low as 10 ppm. The samples shall be collected at the entrance and exit of the cooling water into the heat exchange system. The average entrance and exit concentrations shall be calculated from at least 3 samples. A leak is detected if the exit mean concentration is greater than the entrance mean concentration using a one-sided statistical procedure at the 0.05 level of significance and it is greater by more than 1 ppm or 10%, whichever is greater. Reporting is required semi-annually on a calendar year basis.

Condition 112: 40CFR 63.114(a)(1)(i), Subpart G
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L17
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
(a) Each owner or operator of a process vent that uses a combustion device to comply with the requirements in § 63.113 (a)(1) or (a)(2) of this subpart, or that uses a recovery device or recapture device to comply with the requirements in § 63.113(a)(2) of this subpart, shall install monitoring equipment specified in paragraph (a)(1), (a)(2), (a)(3), (a)(4), or (a)(5) of this section, depending on the type of device used. All monitoring equipment shall be installed, calibrated, maintained, and operated according to manufacturer's specifications or other written procedures that provide adequate assurance that the equipment would reasonably be expected to monitor accurately.
(1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required.
(i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of the firebox in a position before any
substantial heat exchange occurs. The temperature is monitored continuously and averaged over a 24 hour period to assure it does not drop below 999 degrees Centigrade. Reports are required semi-annually on a calendar year basis.

Condition 113: 40CFR 63.114(a)(1)(i), Subpart G
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L16
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP

(a) Each owner or operator of a process vent that uses a combustion device to comply with the requirements in § 63.113 (a)(1) or (a)(2) of this subpart, or that uses a recovery device or recapture device to comply with the requirements in § 63.113(a)(2) of this subpart, shall install monitoring equipment specified in paragraph (a)(1), (a)(2), (a)(3), (a)(4), or (a)(5) of this section, depending on the type of device used. All monitoring equipment shall be installed, calibrated, maintained, and operated according to manufacturer's specifications or other written procedures that provide adequate assurance that the equipment would reasonably be expected to monitor accurately.

(1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required.

(i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of the firebox in a position before any substantial heat exchange occurs. The temperature is monitored continuously and averaged over a 24 hour period to assure it does not drop below 970 degrees Centigrade. Reports are required semi-annually on a calendar year basis.

Condition 114: 40CFR 63.114(a)(3), Subpart G
The Compliance Certification applies to: Emission Unit: C-27018 Process: 401 Emission Source: MCSVI
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP

(a) Each owner or operator of a process vent that uses a combustion device to comply with the requirements in § 63.113 (a)(1) or (a)(2) of this subpart, or that uses a recovery device or recapture device to comply with the requirements in § 63.113(a)(2) of this subpart, shall install monitoring equipment specified in paragraph (a)(1), (a)(2), (a)(3), (a)(4), or (a)(5) of this section, depending on the type of device used. All monitoring equipment shall be installed, calibrated, maintained, and operated according to manufacturer's specifications or other written procedures that provide adequate assurance that the equipment would reasonably be expected to monitor accurately.

(1) Where a boiler or process heater of less than 44 megawatts design heat input capacity is used, the following monitoring equipment is required: a temperature monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas streams that are introduced with primary fuel or are used as the primary fuel. The temperature is monitored continuously and averaged over a 24 hour period to assure it does not drop below 1750 degrees Centigrade. Reports are required semi-annually on a calendar year basis.

Condition 115: 40CFR 63.114(a)(4)(i), Subpart G
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L15
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP

(4) Where a scrubber is used with an incinerator, boiler, or process heater in the case of halogenated vent streams, the following monitoring equipment is required for the scrubber.

(i) A pH monitoring device equipped with a continuous recorder shall be installed to monitor the pH of the scrubber effluent. Minimum pH of 8.4 is required for the IWS scrubber. The pH is monitored continuously and averaged over a 24 hour period to assure it does not drop below 8.4. Reports are required semi-annually on a calendar year basis.
Condition 116: 40CFR 63.114(a)(4)(i), Subpart G
The Compliance Certification applies to: Emission Unit: C-27018 Process: 401 Emission Source: MCSVS
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
(4) Where a scrubber is used with an incinerator, boiler, or process heater in the case of halogenated vent streams, the following monitoring equipment is required for the scrubber.
 (i) A pH monitoring device equipped with a continuous recorder shall be installed to monitor the pH of the scrubber effluent. Minimum pH of 3.75 is required. The pH is monitored continuously and averaged over a 24 hour period to assure it does not drop below 3.75. Reports are required semi-annually on a calendar year basis.

Condition 120: 40CFR 63.114(a)(4)(ii), Subpart G
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L13
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
(4) Where a scrubber is used with an incinerator, boiler, or process heater in the case of halogenated vent streams, the following monitoring equipment is required for the scrubber.
 (i) A flow meter equipped with a continuous recorder shall be located at the scrubber influent for liquid flow. The countercurrent scrubber flow rate will be monitored to maintain 1017 gallons per minute. Flow is monitored continuously and averaged over a 24 hour period. Reports are required semi-annually on a calendar year basis.

Condition 121: 40CFR 63.114(a)(4)(ii), Subpart G
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L14
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
(4) Where a scrubber is used with an incinerator, boiler, or process heater in the case of halogenated vent streams, the following monitoring equipment is required for the scrubber.
 (i) A flow meter equipped with a continuous recorder shall be located at the scrubber influent for liquid flow. The countercurrent scrubber flow rate will be monitored to maintain 1,178 gallons per minute. Flow is monitored continuously and averaged over a 24 hour period. Reports are required semi-annually on a calendar year basis.

Condition 122: 40CFR 63.114(a)(4)(ii), Subpart G
The Compliance Certification applies to: Emission Unit: C-27018 Process: 401 Emission Source: MCSVS
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
(4) Where a scrubber is used with an incinerator, boiler, or process heater in the case of halogenated vent streams, the following monitoring equipment is required for the scrubber.
 (i) A flow meter equipped with a continuous recorder shall be located at the scrubber influent for liquid flow to assure a minimum of 125 gallons per minute. Flow is monitored continuously and averaged over a 24 hour period. Reports are required semi-annually on a calendar year basis.

Condition 123: 40CFR 63.114(a)(4)(ii), Subpart G
The Compliance Certification applies to: Emission Unit: E-LISTS Process: L12
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
(4) Where a scrubber is used with an incinerator, boiler, or process heater in the case of halogenated vent streams, the following monitoring equipment is required for the scrubber.
 (i)
(ii) A flow meter equipped with a continuous recorder shall be located at the scrubber influent for liquid flow. The countercurrent scrubber flow rate will be monitored to maintain 1,160 gallons per minute. Flow is monitored continuously and averaged over a 24 hour period. Reports are required semi-annually on a calendar year basis.

Condition 149: 40CFR 63.145(h), Subpart G
The Compliance Certification applies to:
Emission Unit: W-97004 Process: 745 Emission Sources: BIOR1 & BIOR2
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
When Group 1 wastewaters are treated using the bio-systems, the Volatile Suspended Solids (VSS) will be sampled quarterly to demonstrate enhanced biological treatment. If the VSS concentration falls below 1000 mg/L, WATER9 modeling, or equivalent, will be used to demonstrate 95% removal by biological treatment. The regulated HAPs include only those in 40 CFR 63 Subpart G Tables 8 & 9. Reports are required semi-annually on a calendar year basis.

Expired Conditions from the prior Title V Permit includes all those under 40 CFR 63.1203 “What are the standards for hazardous waste incinerators that are effective until compliance with the standards under 40 CFR 63.1219”. They have all been replaced with the comparable standards under 40 CFR 63.1219.

Expired Conditions from the prior Title V Permit include #’s 335, 337, 338 & 340 under 40 CFR 63.1209(jj)(3). These conditions all applied to catagories of waste which are not regulated under this rule.

This regulation requires compliance with the limits established during a Compliance Performance Test (CPT) in order to demonstrate compliance with emission limits in the rule. The facility is required to submit a Notification Of Intent to Compliance (NOIC) upon completion of the CPT. This NOIC has all these limits established during the CPT, which demonstrated overall compliance, and requires the facility to comply with them from the date of submittal of this report. A CPT was performed on the Rotary Kiln Incinerator (RKI) in June of 2016 and on the Fixed Box Incinerator in October of 2016. NOICs were submitted for these in September, 2016 and January, 2017 respectively. Reports are required semi-annually on a calendar year basis.

Condition 398: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to:
Emission Unit: C-27018 Emission Point: 62007 Process: 401 Emission Source: MCSVS
Regulated Contaminant(s): CAS No: 007647-01-0 HYDROGEN CHLORIDE
The scrubber water flow (ES-MCSVS) is monitored to ensure sufficient control efficiency. Engineering calculations will be used as evidence of compliance with control efficiency when the measured flow rate falls below 125 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 399: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s):
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
CAS No: 000064-19-7 ACETIC ACID
Water flow to the third stage of the scrubber will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations under 6 NYCRR 212.9(b). Engineering calculations will be used as evidence of compliance under 6 NYCRR 212.9(b) with contaminant control efficiency when the measured flow rate falls below 7.0 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 400: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s):
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
CAS No: 000064-19-7 ACETIC ACID
Water flow to the second stage of the scrubber will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations under 6 NYCRR 212.9(b). Engineering calculations will be used as evidence of compliance under 6 NYCRR 212.9(b) with contaminant control efficiency when the measured flow rate falls below 6.0 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) for HAPs and 212-3.1(c)(4)(i) for VOCs per the Pre-Compliance Report.

Condition 401: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to:
Emission Unit: C-27018 Emission Point: 62007 Process: 401 Emission Source: MCSVS
Regulated Contaminant(s): CAS No: 007647-01-0 HYDROGEN CHLORIDE
The scrubber water flow (ES-MCSVS) is monitored to ensure sufficient control efficiency. Engineering calculations will be used as evidence of compliance with control efficiency when the measured flow rate falls below 125 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 402: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s):
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
CAS No: 000064-19-7 ACETIC ACID
Water flow to the third stage of the scrubber will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations under 6 NYCRR 212.9(b). Engineering calculations will be used as evidence of compliance under 6 NYCRR 212.9(b) with contaminant control efficiency when the measured flow rate falls below 7.0 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.
Condition 403: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s):
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
CAS No: 000064-19-7 ACETIC ACID
Water flow to the second stage of the scrubber will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations under 6 NYCRR 212.9(b). Engineering calculations will be used as evidence of compliance under 6 NYCRR 212.9(b) with contaminant control efficiency when the measured flow rate falls below 6.0 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 404: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s):
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
CAS No: 000064-19-7 ACETIC ACID
Water flow to the first stage of the scrubber will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations under 6 NYCRR 212.9(b). Engineering calculations will be used as evidence of compliance under 6 NYCRR 212.9(b) with contaminant control efficiency when the measured flow rate falls below 20 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 405: 40CFR 63.2455(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: F-INISH Emission Point: 76006
Regulated Contaminant(s):
CAS No: 000064-19-7 ACETIC ACID
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
Spray tower flow rate will be monitored to ensure sufficient control efficiency. The lower limit of monitoring ensures compliance with all process batch operations under 6 NYCRR 212.9(b). Engineering calculations will be used as evidence of compliance under 6 NYCRR 212.9(b) with contaminant control efficiency when the measured flow rate falls below 6.0 gallons per minute. Compliance with this monitoring requirement assures compliance with Subpart FFFF 63.2465(a) and 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged on a 24 hour basis. Reports are required semi-annually on a calendar year basis.

Condition 407: 40CFR 63.2460(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: C-27018 Process: 083
Condition 408: 40CFR 63.2460(a), Subpart FFFF
The Compliance Certification applies to:
Emission Unit: C-27018 Processes: 083 & 715
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
Collective uncontrolled organic HAP emissions from the sum of all Group 1 batch process vents within the process must be reduced by =98 percent by weight by venting emissions from a sufficient number of the vents through a closed-vent system to any combination of control devices (except a flare). The Group 1 batch process vents in these processes will be vented to a pre-scrubber (MTCSS) to remove non-HAP constituents, and then to the RKI (96RKI) or the Fixed Box #2 Incinerator (93FBI). The temperature in the fire box or in the ductwork immediately downstream of the fire box will be monitored continuously, and averaged over a 24 hour block period, in accordance with 40 CFR 63.988(c)(1). The minimum kiln temperature for 96RKI will be 999°C. Records will be maintained in accordance with 40 CFR Section 63.998. Reports are required on a semi-annual calendar year basis.

Condition 409: 40CFR 63.2460(a), Subpart FFFF
The Compliance Certification applies to:
Emission Unit: C-27018 Processes: 023, 024, 025 & 026
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
Collective uncontrolled organic HAP emissions from the sum of all Group 1 batch process vents within the process must be reduced by =98 percent by weight by venting emissions from a sufficient number of the vents through a closed-vent system to any combination of control devices (except a flare). The Group 1 batch process vents in these processes will be vented to a pre-condenser (source D4CON) and then to the RKI (96RKI) or Fixed Box #2 Incinerator (96FBI). The temperature in the fire box or in the ductwork immediately downstream of the fire box will be monitored continuously, and averaged over a 24 hour block averaging period, in accordance with 40 CFR 63.988(c)(1). The minimum kiln temperature for 96FBI will be 980°C. Records will be maintained in accordance with 40 CFR Section 63.998. Reports are required on a semi-annual calendar year basis.

Condition 410: 40CFR 63.2460(a), Subpart FFFF
The Compliance Certification applies to:
Emission Unit: C-27018 Process: 023, 024, 025, 026
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
Collective uncontrolled organic HAP emissions from the sum of all Group 1 batch process vents within the process must be reduced by =98 percent by weight by venting emissions from a sufficient number of the vents through a closed-vent system to any combination of control devices (except a flare). The Group 1 batch process vents from these processes will be vented to a pre-condenser (source D4CON) and then to the RKI (96RKI) or Fixed Box #2 Incinerator (93FBI). The temperature in the fire box or in the ductwork immediately downstream of the fire box will be monitored continuously, and averaged over a 24 hour block
averaging period, in accordance with 40 CFR 63.988(c)(1). The minimum kiln temperature for 96RKI will be 999°C. Records will be maintained in accordance with 40 CFR Section 63.998. Reports are required on a semi-annual calendar year basis.

Condition 414: 40CFR 63.2465(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 27024 Regulated Contaminant(s): CAS No: 007647-01-0 HYDROGEN CHLORIDE

The scrubber temperature will be monitored continuously, and averaged over a 24 hour period, to ensure the scrubber is operating at the required control efficiency. Engineering calculations will be used as evidence of compliance with control efficiency when the measured parameter exceeds 95 degrees Centigrade. Compliance with this monitoring requirement assures compliance with 212.9(b) per the Pre-Compliance Report. Reports are required on a semi-annual calendar year basis.

Condition 415: 40CFR 63.2465(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 35044 Process: 067 Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP

The water flow to the scrubber is monitored continuously, and averaged over a 24 hour period, to ensure the scrubber is operating at the required control efficiency. Engineering calculations will be used as evidence of compliance with control efficiency when the measured flow rate falls below the lower limit of monitoring. Compliance with this monitoring requirement assures compliance with 212.9(b) per the Pre-Compliance Report. Reports are required on a semi-annual calendar year basis.

Condition 416: 40CFR 63.2465(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: C-27035 Emission Point: 27035 Regulated Contaminant(s): CAS No: 007647-01-0 HYDROGEN CHLORIDE

The packed tower water scrubber flow is maintained at a minimum of 5 gpm to ensure 99% control efficiency for Part 212. Engineering calculations will be used as evidence of compliance with control efficiency when the measured flow rate falls below the lower limit of monitoring. Compliance with this monitoring requirement assures compliance with 212.9(b) per the Pre-Compliance Report. The flow is monitored continuously and averaged over a 24 hour period. Reports are required on a semi-annual calendar year basis.

Condition 417: 40CFR 63.2465(a), Subpart FFFF
The Compliance Certification applies to:
Emission Unit: C-27018 Emission Points: 76710 & 76711
Regulated Contaminant(s):
CAS No: 000067-56-1 METHYL ALCOHOL
CAS No: 000075-36-5 ACETYL CHLORIDE
CAS No: 000075-65-0 2-METHYL-2-PRO Panol
CAS No: 001112-39-6 SILANE, DIMETH OXYDIMETHYL
CAS No: 007647-01-0 HYDROGEN CHLORIDE
CAS No: 000067-64-1 DIMETHYL KETONE

High acid scrubber water flow will be monitored to ensure sufficient control efficiency. The lower limit of monitoring (40 gallons per minute) ensures compliance with all process batch operations. Engineering calculations will be used as evidence of compliance with contaminant control efficiency when the measured flow rate falls below the lower limit of monitoring. The flow is monitored continuously and averaged over a 24 hour block averaging period. Compliance with this monitoring requirement assures compliance with 212.9(b) per the Pre-Compliance Report. Reports are required on a semi-annual calendar year basis.

Condition 418: 40CFR 63.2465(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 76001
Regulated Contaminant(s):
- CAS No: 000067-56-1 METHYL ALCOHOL
- CAS No: 000067-64-1 DIMETHYL KETONE
- CAS No: 000075-36-5 ACETYL CHLORIDE
- CAS No: 000075-78-5 DIMETHYLDICHLOROSILANE
- CAS No: 000075-79-6 METHYLTRICHLOROSILANE
- CAS No: 001017-46-0 HEXAMETHYLDISILOXANE
- CAS No: 001010-88-3 TOLUENE
- CAS No: 00124-70-9 SILANE, DICHLOROETHENYLMETHYL
- CAS No: 001112-39-6 SILANE, DIMETHOXYDIMETHYL
- CAS No: 001185-55-3 METHYLTRIMETHOXYSILANE
- CAS No: 001719-58-0 SILANE, CHLOROETHENYLDIMETHYL
- CAS No: 007647-01-0 HYDROGEN CHLORIDE
- CAS No: 010026-04-7 TETRACHLORO SILANE
- CAS No: 068479-14-1 SILANE, CHLORO METHYL DERIVS
- CAS No: 000064-19-7 ACETIC ACID

A flow meter is used to continuously monitor the water flow rate to the scrubber to ensure sufficient control efficiency. Engineering calculations will be used as evidence of compliance with control efficiency when the measured flow rate falls below 72 gallons per minute. Compliance with this monitoring requirement assures compliance with 212.9(b) per the Pre-Compliance Report. Reports are required on a semi-annual calendar year basis.

Condition 419: 40CFR 63.2465(a), Subpart FFFF
The Compliance Certification applies to: Emission Unit: C-27018 Emission Point: 35017
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
The water flow to the scrubber is monitored continuously to ensure the scrubber is operating at the required control efficiency. Engineering calculations will be used as evidence of compliance with control efficiency when the measured flow rate falls below 1.5 gallons per minute. Compliance with this monitoring requirement assures compliance with 212.9(b) per the Pre-Compliance Report. Reports are required on a semi-annual calendar year basis.

Condition 430: 40CFR 63.9000(b), Subpart NNNNN
The Compliance Certification applies to: Emission Unit: C-62014 Process: 407
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
For each caustic scrubber or water scrubber/absorber, maintain the daily average scrubber inlet liquid or recirculating liquid flow rate above the operating limit, or maintain operating parameters within the limits established according to an alternative compliance plan established under §63.8(f). Compliance with this monitoring activity also assures compliance with federal applicable requirement 6NYCRR 212.4(c) for particulates, and state-only applicable requirement 6 NYCRR Section 212.9(b). The lower limit of monitoring (90 gallons per minute) ensures compliance with all process operations. Engineering calculations will be used as compliance with particulate control efficiency when the measured flow rate falls below the lower limit of monitoring. Flow is monitored continuously and averaged over a 24 period. Reports are required on a semi-annual year basis.

Condition 431: 40CFR 63.9000(b), Subpart NNNNN
The Compliance Certification applies to: Emission Unit: C-62014 Process: 407
Regulated Contaminant(s): CAS No: 0NY100-00-0 TOTAL HAP
CAS No: 0NY998-00-0 VOC
For each caustic scrubber or water scrubber/absorber, maintain the daily average scrubber effluent pH within the operating limits (greater than pH 9.0), or maintain operating parameters within the limits established according to an alternative compliance plan established under §63.8(f). Compliance with this
monitoring activity also assures compliance with state-only applicable requirement 6 NYCRR Section 212-3.1(c)(4)(i). Reports are required on a semi-annual year basis.