Exercise 2

Target MCRT Calculation

Use the attached worksheet to calculate the target aerobic MCRT for the following conditions:

> Temperature $=20^{\circ} \mathrm{C}$
> Average Effluent $\mathrm{NH}_{4}{ }^{+}-\mathrm{N}=1 \mathrm{mg} / \mathrm{L}$
> Average Aeration Tank DO $=3 \mathrm{mg} / \mathrm{L}$

Assume Tank is a Complete Mix System

Calculation of Target Mean Cell Residence Time for Nitrification

Required Input Data
(1) Average Temperature in Aeration Tank, T \qquad ${ }^{\circ} \mathrm{C}$
(2) Average Effluent Ammonia Concentration \qquad $\mathrm{mg} / \mathrm{L}($ as N$)$
(3) Average Aeration Tank Dissolved Oxygen Concentration \qquad mg/L

Determine Maximum Specific Growth Rate Corrected For Temperature (μ max, T)
(4) $\quad \mu_{\max , \mathrm{T}}=(0.65)^{*}(1.055)^{(T-25)}$
(5) $\mu_{\max , \ldots}=(0.65)^{*}(1.055)^{(L 25)}=\ldots$ day $^{-1}$

Determine Decay Rate Corrected For Temperature (kd)
(6) $\mathrm{k}_{\mathrm{d}}=(0.05)^{*}(1.055)^{(T-25)}$
(7) $\left.\mathrm{k}_{\mathrm{d}}=(0.05) *(1.055)\right)^{-25)}=\quad$ Enter temperature in ${ }^{\circ} \mathrm{C}$ from line (1)

Determine Growth Rate Correction Factor For Ammonia Concentration

(8) $\mathrm{CF}_{\mathrm{NH} 4+}=\frac{\mathrm{NH}_{4}{ }^{+}-\mathrm{N}}{\mathrm{K}_{\mathrm{N}}+\mathrm{NH}_{4}{ }^{+}-\mathrm{N}}$
(9) $\mathrm{K}_{\mathrm{N}}=(1.0)^{*}(1.055)^{(\mathrm{T}-25)}$
(10) $\mathrm{K}_{\mathrm{N}}=(1.0)^{*}(1.055){\underset{\sim}{(25)}}^{-25}=$ \qquad mg/L Enter temperature in ${ }^{\circ} \mathrm{C}$ from line (1)
(11) $\mathrm{CF}_{\mathrm{NH} 4+}=$

$=$ \qquad

Enter K_{N} from line (10)
Enter effluent ammonia from line (2)

Determine Growth Rate Correction Factor For Dissolved Oxygen Concentration
(12) $\mathrm{CF}_{\mathrm{DO}}=$ \qquad
(13) $\mathrm{CF}_{\mathrm{DO}}=$

\qquad

Enter DO from line (3)

Determine Growth Rate Corrected For Temperature, Ammonia and DO
(14) $\mu_{\mathrm{T}}=\mu_{\max , \mathrm{T}}{ }^{*}\left(\mathrm{CF}_{\mathrm{NH} 4+}\right){ }^{*}\left(\mathrm{CF}_{\mathrm{DO}}\right)$
(15) $\mu_{\mathrm{T}}=(\underbrace{*}_{\mathbf{\Delta}}$

Enter $\mu_{\text {max }}, T$ from line (5)

Determine Required MCRT
(16) $\mathrm{MCRT}=$

Enter μ_{T} from line (15)

