Exercise 3
 Actual MCRT Calculation

Use the attached worksheet to calculate the operating MCRT for the following conditions:

Aerobic Volume $=7.5 \mathrm{MG}$
Anoxic Volume $=2.5 \mathrm{MG}$
Aerobic Zone MLSS $=2500 \mathrm{mg} / \mathrm{L}$
Anoxic Zone MLSS $=2500 \mathrm{mg} / \mathrm{L}$
Sludge Wasting Rate $=0.5 \mathrm{MGD}$
Waste Sludge TSS $=0.75 \%$
Plant Flow $=40$ MGD
Secondary Clarifier TSS $=13 \mathrm{mg} / \mathrm{L}$

Calculation of Actual Mean Cell Residence Time

Required Input Data
Aeration Tank Volume
(1) Aerobic Volume, $\mathrm{V}_{\mathrm{AER}}$

(2) Anoxic Volume (if applicable), $\mathrm{V}_{\text {ANOX }}$

Average MLSS Concentration
(3) Aerobic Zone, MLSS \qquad mg/L
(4) Anoxic Zone (if applicable), $\mathrm{MLSS}_{\text {ANOX }}$
(5) Sludge Wasting Rate, Q_{W} \qquad MGD
(6) Waste Sludge Solids Concentration, $\mathrm{TSS}_{\mathrm{W}}$
(7) Clarifier Effluent Flow, Q_{E}
\qquad mg/L
(8) Clarifier Effluent TSS, TSS $_{E}$ \qquad mg/L

Determine Mass of Solids in Anoxic Zone
(9) $\quad \mathrm{M}_{\mathrm{ANOX}}=\left(\mathrm{V}_{\mathrm{ANOX}}\right)(8.34)\left(\mathrm{MLSS}_{\mathrm{ANOX}}\right)$
(10) $\quad \mathrm{M}_{\text {ANOX }}=(\ldots)(8.34)(\ldots)=\ldots \quad \mathrm{lb}$

Determine Mass of Solids in Aerobic Zone
(11) $\quad \mathrm{M}_{\text {AER }}=\left(\mathrm{V}_{\mathrm{AER}}\right)(8.34)\left(\mathrm{MLSS}_{\mathrm{AER}}\right)$
(12) $\quad \mathrm{M}_{\text {AER }}=$ \qquad $)(8.34)(\square)=$ \qquad lb Enter from line (1)今 Enter from line (3)

Determine Mass of Solids Removed from System in Waste Sudge
(13) $\quad \mathrm{M}_{\mathrm{W}}=\left(\mathrm{Q}_{\mathrm{W}}\right)(8.34)\left(\mathrm{TSS}_{\mathrm{w}}\right)$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{w}}=(\tag{14}
\end{equation*}
$$)(8.34)(\qquad) $=$ \qquad lb/day

Enter from line (5) \qquad Enter from line (6)

Determine Mass of Solids Removed from System in Plant Effluent
(15) $\quad M_{E}=\left(Q_{E}\right)(8.34)\left(T S S_{E}\right)$
(16)

$$
\mathrm{M}_{\mathrm{E}}=(\square)
$$ $)(8.34)\left(_\quad\right)=$ \qquad lb/day Enter from line (7) ${ }^{\boldsymbol{\jmath}}$ \qquad Enter from line (8)

Determine Overall MCRT

$$
\begin{equation*}
M C R T=\frac{\left(M_{A N O X}+M_{A E R}\right)}{\left(M_{W}+M_{E}\right)} \tag{17}
\end{equation*}
$$

Enter from line (10) Enter from line (12)
MCRT $=$
 $+\square)=$ \qquad days

Enter from line (14)
 $+$ \qquad)

\qquad Enter from line (16)

Determine Aerobic MCRT
(19) $\quad \mathrm{MCRT}_{\text {AER }}=\frac{\left(\mathrm{M}_{\mathrm{AER}}\right)(\mathrm{MCRT})}{\left(\mathrm{M}_{\mathrm{AER}}+\mathrm{M}_{\mathrm{ANOX}}\right)}$

Determine Anoxic MCRT
(21) $\quad \mathrm{MCRT}_{\text {ANOX }}=(\mathrm{MCRT})-\left(\mathrm{MCRT}_{\text {AER }}\right)$
(22) $\quad \mathrm{MCRT}_{\text {ANOX }}=$ \qquad) - \qquad) = \qquad days Enter from line (18)

 Enter from line (20)

